问题
I need to replace "0" row data in pandas with the previous rows non-zero value IF and ONLY IF, the value in the row following the "0" is non zero.
I.e.
101
92
78
0
107
0
0
would become:
101
92
78
78
107
0
0
Any ideas how to do this would be much appreciated :-)
Thanks!
回答1:
using shift
you could do
In [608]: df.loc[(df.val == 0) & (df.val.shift(-1) != 0), 'val'] = df.val.shift(1)
In [609]: df
Out[609]:
val
0 101.0
1 92.0
2 78.0
3 78.0
4 107.0
5 0.0
6 0.0
回答2:
This is answer is similar to JohnGalt but it faster when compared:
In [12]: np.where((df.Val.values==0)&(df.Val.shift(-1)!=0),df.Val.shift(),df.Val)
Out[31]: array([ 101., 92., 78., 78., 107., 0., 0.])
In [24]: %timeit np.where((df.Val.values==0)&(df.Val.shift(-1)!=0),df.Val.shift(),df.Val)
1000 loops, best of 3: 671 µs per loop
In [25]: %timeit df.loc[(df.Val == 0) & (df.Val.shift(-1) != 0), 'val'] = df.Val.shift(1)
100 loops, best of 3: 2.01 ms per loop
来源:https://stackoverflow.com/questions/45080403/replace-pandas-zero-value-with-ffill-non-zero-if-the-subsequent-value-is-non-ze