问题
I have been trying without much success to implement a higher order function that would take in repeat(f, n) where f is another function and n is the integer value that says how many times n will be applied to a variable x. For example:
def integer(x):
x + 1
so i would have repeat (integer, 5) and I would have integer(integer(integer(integer(integer(x)
回答1:
You can use a simple for loop.
>>> def integer_inc(x):
... return x + 1
...
>>> def repeat(func, n, x):
... for i in range(n):
... x = func(x)
... return x
...
>>> repeat(integer_inc, 5, 1)
6
>>>
回答2:
Well, there's the iterative approach:
def repeat(f, n):
def new_fn(x):
for _ in range(n):
x = f(x)
return x
return new_fn
higher_fn = repeat(lambda x: x+3, 5)
higher_fn(2) # => 17 == (((((2 + 3) + 3) + 3) + 3) + 3)
and the compositional approach:
def repeat(f, n):
new_fn_str = "lambda x: {}x{}".format("f(" * n, ")" * n)
new_fn = eval(new_fn_str, {"f": f})
return new_fn
which results in exactly the same thing but may be slightly faster.
回答3:
We also have the recursive implementation:
def repeat(f, n):
if n == 1:
return f
else:
return lambda x: f(repeat(f,n-1)(x))
回答4:
You can create a decorator,
from functools import wraps
def repeat(n=1):
def decorator(func):
@wraps(func)
def wrapper(args):
args = func(args)
for i in xrange(n-1):
args = func(args)
return args
return wrapper
return decorator
if __name__ == "__main__":
@repeat(n=6)
def test(a):
print a
return a+1
test(1)
来源:https://stackoverflow.com/questions/28259967/how-do-i-apply-a-function-n-times