Writing nested schema to BigQuery from Dataflow (Python)

旧街凉风 提交于 2021-02-07 07:08:21

问题


I have a Dataflow job to write to BigQuery. It works well for non-nested schema, however fails for the nested schema.

Here is my Dataflow pipeline:

pipeline_options = PipelineOptions()
  p = beam.Pipeline(options=pipeline_options)

  wordcount_options = pipeline_options.view_as(WordcountTemplatedOptions)

  schema = 'url: STRING,' \
           'ua: STRING,' \
           'method: STRING,' \
           'man: RECORD,' \
           'man.ip: RECORD,' \
           'man.ip.cc: STRING,' \
           'man.ip.city: STRING,' \
           'man.ip.as: INTEGER,' \
           'man.ip.country: STRING,' \
           'man.res: RECORD,' \
           'man.res.ip_dom: STRING'

  first = p | 'read' >> ReadFromText(wordcount_options.input)
  second = (first
            | 'process' >> (beam.ParDo(processFunction()))
            | 'write' >> beam.io.WriteToBigQuery(
              'myBucket:tableFolder.test_table',
              schema=schema)
  )

I created BigQuery Table using the following Schema is:

[
  {
    "mode": "NULLABLE",
    "name": "url",
    "type": "STRING"
  },
  {
    "mode": "NULLABLE",
    "name": "ua",
    "type": "STRING"
  },
  {
    "mode": "NULLABLE",
    "name": "method",
    "type": "STRING"
  },
  {
    "mode": "REPEATED",
    "name": "man",
    "type": "RECORD",
    "fields":
      [
        {
          "mode": "REPEATED",
          "name": "ip",
          "type": "RECORD",
          "fields":
            [
              {
                "mode": "NULLABLE",
                "name": "cc",
                "type": "STRING"
              },
              {
                "mode": "NULLABLE",
                "name": "city",
                "type": "STRING"
              },
              {
                "mode": "NULLABLE",
                "name": "as",
                "type": "INTEGER"
              },
              {
                "mode": "NULLABLE",
                "name": "country",
                "type": "STRING"
              }
            ]
        },
        {
          "mode": "REPEATED",
          "name": "res",
          "type": "RECORD",
          "fields":
            [
              {
                "mode": "NULLABLE",
                "name": "ip_dom",
                "type": "STRING"
              }
            ]
        }
      ]
  }
]

I am getting the following error:

BigQuery creation of import job for table "test_table" in dataset "tableFolder" in project "myBucket" failed., BigQuery execution failed., HTTP transport error:
 Message: Invalid value for: url is not a valid value
 HTTP Code: 400

Question Can someone please guide me? What am I doing wrong? Also, If there is a better way to iterate through all the nested schema and write to BigQuery please suggest?

Additional info My data file:

{"url":"xyz.com","ua":"Mozilla/5.0 Chrome/63","method":"PUT","man":{"ip":{"cc":"IN","city":"delhi","as":274,"country":"States"},"res":{"ip_dom":"v1"}}}
{"url":"xyz.com","ua":"Mozilla/5.0 Chrome/63","method":"PUT","man":{"ip":{"cc":"DK","city":"munlan","as":4865,"country":"United"},"res":{"ip_dom":"v1"}}}
{"url":"xyz.com","ua":"Mozilla/5.0 Chrome/63","method":"GET","man":{"ip":{"cc":"BS","city":"sind","as":7655,"country":"India"},"res":{"ip_dom":"v1"}}}

回答1:


The problem with your code is that you try to use nested fields while specifying BigQuery Table Schema as string, which is not supported. In order to push nested records into BigQuery from Apache Beam you need to create TableSchema object, i.e using built-in parser:

from apache_beam.io.gcp.bigquery import parse_table_schema_from_json
table_schema = parse_table_schema_from_json(your_bigquery_json_schema)

You need to pass schema as JSON string there, you can obtain it using the following command in your terminal (I assume that you have gcloud tools installed):

bq --project=your-gcp-project-name --format=json show your.table.name > schema.json

and in Python use it as follows:

table_schema = parse_table_schema_from_json(json.dumps(json.load(open("schema.json"))["schema"]))

Then in your pipeline:

 beam.io.WriteToBigQuery(
              'myBucket:tableFolder.test_table',
              schema=table_schema)

You can also take a look at the example showing manual creation of TableSchema object: https://github.com/apache/beam/blob/474345f5987e47a22d063c7bfcb3638c85a57e64/sdks/python/apache_beam/examples/cookbook/bigquery_schema.py

which is (from the linked example):

from apache_beam.io.gcp.internal.clients import bigquery
table_schema = bigquery.TableSchema()
full_name_schema = bigquery.TableFieldSchema()
full_name_schema.name = 'fullName'
full_name_schema.type = 'string'
full_name_schema.mode = 'required'
table_schema.fields.append(full_name_schema)

# A nested field
phone_number_schema = bigquery.TableFieldSchema()
phone_number_schema.name = 'phoneNumber'
phone_number_schema.type = 'record'
phone_number_schema.mode = 'nullable'
number = bigquery.TableFieldSchema()
number.name = 'number'
number.type = 'integer'
number.mode = 'nullable'
phone_number_schema.fields.append(number)

table_schema.fields.append(phone_number_schema)
area_code = bigquery.TableFieldSchema()
area_code.name = 'areaCode'
area_code.type = 'integer'
area_code.mode = 'nullable'
phone_number_schema.fields.append(area_code)
table_schema.fields.append(phone_number_schema)

then just use table_schema variable in beam.io.WriteToBigQuery.



来源:https://stackoverflow.com/questions/48741327/writing-nested-schema-to-bigquery-from-dataflow-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!