Truth-table reduction to ternary logic operations, vpternlog

对着背影说爱祢 提交于 2021-02-06 10:52:12

问题


I have many truth-tables of many variables (7 or more) and I use a tool (eg logic friday 1) to simplify the logic formula. I could do that by hand but that is much too error prone. These formula I then translate to compiler intrinsics (eg _mm_xor_epi32) which works fine.

Question: with vpternlog I can make ternary logic operations. But I'm not aware of a method to simplify my truth-tables to sequences of vpternlog instructions that are (somewhat) efficient.

I'm not asking if someone knows a tool that simplifies to arbitrary ternary logic operations, although that would be great, I'm looking for a method to do such simplifications.

Edit: I asked a similar question on Electrical Engineering.


回答1:


Outside of just leaving it to the compiler, or the hand-wavy suggestions in the 2nd section of my answer, see HJLebbink's self-answer using FPGA logic-optimization tools. (This answer ended up with the bounty because it failed to attract such an answer from anyone else; it's not really bounty-worthy. :/ I wrote it before there was a bounty, but don't have anything else useful to add.)


ICC18 optimizes chained _mm512_and/or/xor_epi32 intrinsics into vpternlogd instructions, but gcc/clang don't.

On Godbolt for this and a more complicated function using some inputs multiple times:

#include <immintrin.h>

__m512i logic(__m512i a, __m512i b, __m512i c,
               __m512i d, __m512i e, __m512i f, __m512i g) {
//     return _mm512_and_epi32(_mm512_and_epi32(a, b), c);
     return a & b & c & d & e & f;
}

gcc -O3 -march=skylake-avx512 nightly build

logic:
    vpandq  zmm4, zmm4, zmm5
    vpandq  zmm3, zmm2, zmm3
    vpandq  zmm4, zmm4, zmm3
    vpandq  zmm0, zmm0, zmm1
    vpandq  zmm0, zmm4, zmm0
    ret

ICC18 -O3 -march=skylake-avx512

 logic:
    vpternlogd zmm2, zmm0, zmm1, 128                        #6.21
    vpternlogd zmm4, zmm2, zmm3, 128                        #6.29
    vpandd    zmm0, zmm4, zmm5                              #6.33
    ret                                                     #6.33

IDK how good it is at picking optimal solutions when each variable is used more than once in different subexpressions.


To see if it does a good job, you have to do the optimization yourself. You want to find sets of 3 variables that can be combined together into a single boolean value without still needing those 3 variables anywhere else in the expression.

I think it's possible for a truth table with more than 3 inputs to not simplify down this way, to a smaller truth table where one of the columns is the result of a ternary combination of 3 of the inputs. e.g. I think it's not guaranteed that it's possible to simplify a 4 input function to vpternlog + AND, OR, or XOR.

I'd definitely worry that compilers might pick 3 inputs to combine that didn't result in as much simplification as a different choice of 3.

It might even be optimal for a compiler to start with a binary operation or two on a couple pairs to set up for a ternary operation, especially if that enables better ILP.

You could probably write a brute-force truth-table optimizer that looked for triplets of variables that could be combined to make a smaller table for just the ternary result and the rest of the table. But I'm not sure a greedy approach is guaranteed to give the best results. If there are multiple ways to combine with the same total instruction count, they're probably not all equivalent for ILP (Instruction Level Parallelism).




回答2:


How to translate a truth table to a sequence of vpternlog instructions.

  1. Translate the truth table into a logical formula; use e.g., Logic Friday.
  2. Store the logical formula in Synopsys equation format (.eqn). E.g., I used a network with 6 input nodes A to F, two output nodes F0 and F1, and a somewhat complicated (non unate) Boolean function.

Content of BF_Q6.eqn:

INORDER = A B C D E F; 
OUTORDER = F0 F1;
F0 = (!A*!B*!C*!D*!E*F) + (!A*!B*!C*!D*E*!F) + (!A*!B*!C*D*!E*!F) + (!A*!B*C*!D*!E*!F) + (!A*B*!C*!D*!E*!F) + (A*!B*!C*!D*!E*!F);
F1 = (!A*!B*!C*!D*E) + (!A*!B*!C*D*!E) + (!A*!B*C*!D*!E) + (!A*B*!C*!D*!E) + (A*!B*!C*!D*!E);
  1. Use "ABC: A System for Sequential Synthesis and Verification" from the Berkeley Verification and Synthesis Research Center. I used the windows version. Get ABC here.

In ABC I run:

abc 01> read_eqn BF_Q6.eqn
abc 02> choice; if -K 3; ps
abc 03> lutpack -N 3 -S 3; ps
abc 04> show
abc 05> write_bench BF_Q6.bench

You may need to run choice; if -K 3; ps multiple time to get better results.

The resulting BF_Q6.bench contains the 3-LUTs for an FPGA:

INPUT(A)
INPUT(B)
INPUT(C)
INPUT(D)
INPUT(E)
INPUT(F)
OUTPUT(F0)
OUTPUT(F1)
n11         = LUT 0x01 ( B, C, D )
n12         = LUT 0x1 ( A, E )
n14         = LUT 0x9 ( A, E )
n16         = LUT 0xe9 ( B, C, D )
n18         = LUT 0x2 ( n11, n14 )
F1          = LUT 0xae ( n18, n12, n16 )
n21         = LUT 0xd9 ( F, n11, n14 )
n22         = LUT 0xd9 ( F, n12, n16 )
F0          = LUT 0x95 ( F, n21, n22 )

4. This can be translated to C++ mechanically:

__m512i not(__m512i a) { return _mm512_xor_si512(a, _mm512_set1_epi32(-1)); }
__m512i binary(__m512i a, __m512i b, int i) {
    switch (i)
    {
        case 0: return _mm512_setzero_si512();
        case 1: return not(_mm512_or_si512(a, b));
        case 2: return _mm512_andnot_si512(a, b);
        case 3: return not(a);
        case 4: return _mm512_andnot_si512(b, a);
        case 5: return not(b);
        case 6: return _mm512_xor_si512(a, b);
        case 7: return not(_mm512_and_si512(a, b));
        case 8: return _mm512_and_si512(a, b);
        case 9: return not(_mm512_xor_si512(a, b));
        case 10: return b;
        case 11: return _mm512_or_si512(not(a), b);
        case 12: return a;
        case 13: return mm512_or_si512(a, not(b)); 
        case 14: return _mm512_or_si512(a, b);
        case 15: return _mm512_set1_epi32(-1);
        default: return _mm512_setzero_si512();
    }
}
void BF_Q6(const __m512i A, const __m512i B, const __m512i C, const __m512i D, const __m512i E, const __m512i F, __m512i& F0, __m512i& F1) {
    const auto n11 = _mm512_ternarylogic_epi64(B, C, D, 0x01);
    const auto n12 = binary(A, E, 0x1);
    const auto n14 = binary(A, E, 0x9);
    const auto n16 = _mm512_ternarylogic_epi64(B, C, D, 0xe9);
    const auto n18 = binary(n11, n14, 0x2);
    F1 = _mm512_ternarylogic_epi64(n18, n12, n16, 0xae);
    const auto n21 = _mm512_ternarylogic_epi64(F, n11, n14, 0xd9);
    const auto n22 = _mm512_ternarylogic_epi64(F, n12, n16, 0xd9);
    F0 = _mm512_ternarylogic_epi64(F, n21, n22, 0x95);
}

The question remains whether the resulting C++ code is optimal. I don't think that this method (often) yields the smallest networks of 3-LUTs, simply because this problem is NP-hard. Additionally, it is not possible to inform ABC about instruction parallelism, and it is not possible to prioritize the order of variables such that variables that will be used later are not in the first position of the LUT (since the first source operand is overwritten with the result). But the compiler may be smart enough to do such optimizations.

ICC18 gives the following assembly:

00007FF75DCE1340  sub         rsp,78h
00007FF75DCE1344  vmovups     xmmword ptr [rsp+40h],xmm15
00007FF75DCE134A  vmovups     zmm2,zmmword ptr [r9]
00007FF75DCE1350  vmovups     zmm1,zmmword ptr [r8]
00007FF75DCE1356  vmovups     zmm5,zmmword ptr [rdx]
00007FF75DCE135C  vmovups     zmm4,zmmword ptr [rcx]

00007FF75DCE1362  vpternlogd  zmm15, zmm15, zmm15, 0FFh
00007FF75DCE1369  vpternlogq  zmm5, zmm1, zmm2, 0E9h
00007FF75DCE1370  vmovaps     zmm3, zmm2
00007FF75DCE1376  mov         rax, qword ptr[&E]
00007FF75DCE137E  vpternlogq  zmm3, zmm1, zmmword ptr[rdx], 1
00007FF75DCE1385  mov         r11, qword ptr[&F]
00007FF75DCE138D  mov         rcx, qword ptr[F0]
00007FF75DCE1395  mov         r10, qword ptr[F1]
00007FF75DCE139D  vpord       zmm0, zmm4, zmmword ptr[rax]
00007FF75DCE13A3  vpxord      zmm4, zmm4, zmmword ptr[rax]
00007FF75DCE13A9  vpxord      zmm0, zmm0, zmm15
00007FF75DCE13AF  vpxord      zmm15, zmm4, zmm15
00007FF75DCE13B5  vpandnd     zmm1, zmm3, zmm15
00007FF75DCE13BB  vpternlogq  zmm1, zmm0, zmm5, 0AEh
00007FF75DCE13C2  vpternlogq  zmm15, zmm3, zmmword ptr[r11], 0CBh
                              ^^^^^        ^^^^^^^^^^^^^^^^  
00007FF75DCE13C9  vpternlogq  zmm5, zmm0, zmmword ptr[r11], 0CBh
00007FF75DCE13D0  vmovups     zmmword ptr[r10], zmm1
00007FF75DCE13D6  vpternlogq  zmm5, zmm15, zmmword ptr[r11], 87h                                  
00007FF75DCE13DD  vmovups     zmmword ptr [rcx],zmm5

00007FF75DCE13E3  vzeroupper
00007FF75DCE13E6  vmovups     xmm15,xmmword ptr [rsp+40h]
00007FF75DCE13EC  add         rsp,78h
00007FF75DCE13F0  ret

ICC18 is able to change the variable ordering in const auto n22 = _mm512_ternarylogic_epi64(F, n12, n16, 0xd9); to vpternlogq zmm15, zmm3, zmmword ptr[r11], 0CBh such that variable F is not overwritten. (But strangely enough fetched from memory 3 times...)



来源:https://stackoverflow.com/questions/47537580/truth-table-reduction-to-ternary-logic-operations-vpternlog

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!