LeetCode(42):接雨水

╄→尐↘猪︶ㄣ 提交于 2021-01-30 09:35:00

Hard!

题目描述:

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 感谢 Marcos 贡献此图。

示例:

输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6

解题思路:

先来看一种方法,这种方法是基于动态规划Dynamic Programming的,我们维护一个一维的dp数组,这个DP算法需要遍历两遍数组,第一遍遍历dp[i]中存入i位置左边的最大值,然后开始第二遍遍历数组,第二次遍历时找右边最大值,然后和左边最大值比较取其中的较小值,然后跟当前值A[i]相比,如果大于当前值,则将差值存入结果。

C++解法一:

 1 class Solution {
 2 public:
 3     int trap(vector<int>& height) {
 4         int res = 0, mx = 0, n = height.size();
 5         vector<int> dp(n, 0);
 6         for (int i = 0; i < n; ++i) {
 7             dp[i] = mx;
 8             mx = max(mx, height[i]);
 9         }
10         mx = 0;
11         for (int i = n - 1; i >= 0; --i) {
12             dp[i] = min(dp[i], mx);
13             mx = max(mx, height[i]);
14             if (dp[i] > height[i]) res += dp[i] - height[i];
15         }
16         return res;
17     }
18 };

最后我们来看一种只需要遍历一次即可的解法,这个算法需要left和right两个指针分别指向数组的首尾位置,从两边向中间扫描,在当前两指针确定的范围内,先比较两头找出较小值,如果较小值是left指向的值,则从左向右扫描,如果较小值是right指向的值,则从右向左扫描,若遇到的值比当前较小值小,则将差值存入结果,如遇到的值大,则重新确定新的窗口范围,以此类推直至left和right指针重合。

C++解法二:

 1 class Solution {
 2 public:
 3     int trap(vector<int>& height) {
 4         int res = 0, l = 0, r = height.size() - 1;
 5         while (l < r) {
 6             int mn = min(height[l], height[r]);
 7             if (mn == height[l]) {
 8                 ++l;
 9                 while (l < r && height[l] < mn) {
10                     res += mn - height[l++];
11                 }
12             } else {
13                 --r;
14                 while (l < r && height[r] < mn) {
15                     res += mn - height[r--];
16                 }
17             }
18         }
19         return res;
20     }
21 };

我们可以对上面的解法进行进一步优化,使其更加简洁。

C++解法三:

 1 class Solution {
 2 public:
 3     int trap(vector<int>& height) {
 4         int l = 0, r = height.size() - 1, level = 0, res = 0;
 5         while (l < r) {
 6             int lower = height[(height[l] < height[r]) ? l++ : r--];
 7             level = max(level, lower);
 8             res += level - lower;
 9         }
10         return res;
11     }
12 };

下面这种解法是用stack来做的。其实用stack的方法更容易理解,我们的做法是,遍历高度,如果此时栈为空,或者当前高度小于等于栈顶高度,则把当前高度的坐标压入栈,注意我们不直接把高度压入栈,而是把坐标压入栈,这样方便我们接下来计算水平距离。

当我们遇到比栈顶高度高的时候,就说明有可能会有坑存在,可以装雨水。此时我们栈里至少有一个高度,如果只有一个的话,那么不能形成坑,我们直接跳过,如果多于一个的话,那么此时把栈顶元素取出来当作坑,新的栈顶元素就是左边界,当前高度是右边界,只要取二者较小的,减去坑的高度,长度就是右边界坐标减去左边界坐标再减1,二者相乘就是盛水量了。

C++解法四:

 1 class Solution {
 2 public:
 3     int trap(vector<int>& height) {
 4         stack<int> st;
 5         int i = 0, res = 0, n = height.size();
 6         while (i < n) {
 7             if (st.empty() || height[i] <= height[st.top()]) {
 8                 st.push(i++);
 9             } else {
10                 int t = st.top(); st.pop();
11                 if (st.empty()) continue;
12                 res += (min(height[i], height[st.top()]) - height[t]) * (i - st.top() - 1);
13             }
14         }
15         return res;
16     }
17 };

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!