参考:https://blog.csdn.net/ErickPang/article/details/84680132
采用自带默认网关请参照微服务架构spring cloud - gateway网关限流,参数与其唯一的区别是header中多了参数userLevel,值为A或者B
此处实现按传入参数取到不同配置
userLvl.A.replenishRate: 10
userLvl.A.burstCapacity: 100
userLvl.B.replenishRate: 20
userLvl.B.burstCapacity: 1000
自定义限流器
package com.gatewayaop.filter;
import com.iot.crm.gatewayaop.common.config.UserLevelRateLimiterConf;
import org.springframework.beans.BeansException;
import org.springframework.cloud.gateway.filter.ratelimit.AbstractRateLimiter;
import org.springframework.cloud.gateway.filter.ratelimit.RateLimiter;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.data.redis.core.ReactiveRedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;
import org.springframework.util.ObjectUtils;
import org.springframework.validation.Validator;
import org.springframework.validation.annotation.Validated;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import javax.validation.constraints.Min;
import java.time.Instant;
import java.util.*;
import java.util.concurrent.atomic.AtomicBoolean;
public class UserLevelRedisRateLimiter extends AbstractRateLimiter<UserLevelRedisRateLimiter.Config> implements ApplicationContextAware {
//这些变量全部从RedisRateLimiter复制的,都会用到。
public static final String REPLENISH_RATE_KEY = "replenishRate";
public static final String BURST_CAPACITY_KEY = "burstCapacity";
public static final String CONFIGURATION_PROPERTY_NAME = "sys-redis-rate-limiter";
public static final String REDIS_SCRIPT_NAME = "redisRequestRateLimiterScript";
public static final String REMAINING_HEADER = "X-RateLimit-Remaining";
public static final String REPLENISH_RATE_HEADER = "X-RateLimit-Replenish-Rate";
public static final String BURST_CAPACITY_HEADER = "X-RateLimit-Burst-Capacity";
//处理速度
private static final String DEFAULT_REPLENISHRATE="default.replenishRate";
//容量
private static final String DEFAULT_BURSTCAPACITY="default.burstCapacity";
private ReactiveRedisTemplate<String, String> redisTemplate;
private RedisScript<List<Long>> script;
private AtomicBoolean initialized = new AtomicBoolean(false);
private String remainingHeader = REMAINING_HEADER;
/** The name of the header that returns the replenish rate configuration. */
private String replenishRateHeader = REPLENISH_RATE_HEADER;
/** The name of the header that returns the burst capacity configuration. */
private String burstCapacityHeader = BURST_CAPACITY_HEADER;
private Config defaultConfig;
public UserLevelRedisRateLimiter(ReactiveRedisTemplate<String, String> redisTemplate,
RedisScript<List<Long>> script, Validator validator) {
super(Config.class , CONFIGURATION_PROPERTY_NAME , validator);
this.redisTemplate = redisTemplate;
this.script = script;
initialized.compareAndSet(false,true);
}
public UserLevelRedisRateLimiter(int defaultReplenishRate, int defaultBurstCapacity){
super(Config.class , CONFIGURATION_PROPERTY_NAME , null);
defaultConfig = new Config()
.setReplenishRate(defaultReplenishRate)
.setBurstCapacity(defaultBurstCapacity);
}
//具体限流实现,此处调用的是lua脚本
@Override
public Mono<Response> isAllowed(String routeId, String id) {
if (!this.initialized.get()) {
throw new IllegalStateException("RedisRateLimiter is not initialized");
}
if (ObjectUtils.isEmpty(rateLimiterConf) ){
throw new IllegalArgumentException("No Configuration found for route " + routeId);
}
//获取的是自定义的map
Map<String , Integer> rateLimitMap = rateLimiterConf.getRateLimitMap();
//缓存的key,此处routeId为userSev,Id为header参数userLevel的值(A或者B)
String replenishRateKey = routeId + "." + id + "." + REPLENISH_RATE_KEY;
//若map中不存在则采用默认值,存在则取值。
int replenishRate = ObjectUtils.isEmpty(rateLimitMap.get(replenishRateKey)) ? rateLimitMap.get(DEFAULT_REPLENISHRATE) : rateLimitMap.get(replenishRateKey);
//容量key
String burstCapacityKey = routeId + "." + id + "." + BURST_CAPACITY_KEY;
//若map中不存在则采用默认值,存在则取值。
int burstCapacity = ObjectUtils.isEmpty(rateLimitMap.get(burstCapacityKey)) ? rateLimitMap.get(DEFAULT_BURSTCAPACITY) : rateLimitMap.get(burstCapacityKey);
try {
List<String> keys = getKeys(id);
List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "",
Instant.now().getEpochSecond() + "", "1");
Flux<List<Long>> flux = this.redisTemplate.execute(this.script, keys, scriptArgs);
return flux.onErrorResume(throwable -> Flux.just(Arrays.asList(1L, -1L)))
.reduce(new ArrayList<Long>(), (longs, l) -> {
longs.addAll(l);
return longs;
}) .map(results -> {
boolean allowed = results.get(0) == 1L;
Long tokensLeft = results.get(1);
RateLimiter.Response response = new RateLimiter.Response(allowed, getHeaders(replenishRate , burstCapacity , tokensLeft));
return response;
});
} catch (Exception e) {
e.printStackTrace();
}
return Mono.just(new RateLimiter.Response(true, getHeaders(replenishRate , burstCapacity , -1L)));
}
private UserLevelRateLimiterConf rateLimiterConf;
@Override
public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
this.rateLimiterConf = applicationContext.getBean(UserLevelRateLimiterConf.class);
}
public HashMap<String, String> getHeaders(Integer replenishRate, Integer burstCapacity , Long tokensLeft) {
HashMap<String, String> headers = new HashMap<>();
headers.put(this.remainingHeader, tokensLeft.toString());
headers.put(this.replenishRateHeader, String.valueOf(replenishRate));
headers.put(this.burstCapacityHeader, String.valueOf(burstCapacity));
return headers;
}
static List<String> getKeys(String id) {
// use `{}` around keys to use Redis Key hash tags
// this allows for using redis cluster
// Make a unique key per user.
//此处可以自定义redis前缀信息
String prefix = "request_sys_rate_limiter.{" + id;
// You need two Redis keys for Token Bucket.
String tokenKey = prefix + "}.tokens";
String timestampKey = prefix + "}.timestamp";
return Arrays.asList(tokenKey, timestampKey);
}
@Validated
public static class Config{
@Min(1)
private int replenishRate;
@Min(1)
private int burstCapacity = 1;
public int getReplenishRate() {
return replenishRate;
}
public Config setReplenishRate(int replenishRate) {
this.replenishRate = replenishRate;
return this;
}
public int getBurstCapacity() {
return burstCapacity;
}
public Config setBurstCapacity(int burstCapacity) {
this.burstCapacity = burstCapacity;
return this;
}
@Override
public String toString() {
return "Config{" +
"replenishRate=" + replenishRate +
", burstCapacity=" + burstCapacity +
'}';
}
}
}
读取自定义配置类
package com.gatewayaop.common.config;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Configuration;
import org.springframework.stereotype.Component;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
//使用配置文件的方式进行初始化
@Component
@ConfigurationProperties(prefix = "comsumer.ratelimiter-conf")
//@EnableConfigurationProperties(UserLevelRateLimiterConf.class)
public class UserLevelRateLimiterConf {
//处理速度
private static final String DEFAULT_REPLENISHRATE="default.replenishRate";
//容量
private static final String DEFAULT_BURSTCAPACITY="default.burstCapacity";
//默认配置
private Map<String , Integer> rateLimitMap = new ConcurrentHashMap<String , Integer>(){
{
put(DEFAULT_REPLENISHRATE , 10);
put(DEFAULT_BURSTCAPACITY , 100);
}
};
public Map<String, Integer> getRateLimitMap() {
return rateLimitMap;
}
public void setRateLimitMap(Map<String, Integer> rateLimitMap) {
this.rateLimitMap = rateLimitMap;
}
}
定义限流器种类
package com.gatewayaop.common.config;
import com.iot.crm.gatewayaop.filter.UserLevelRedisRateLimiter;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.cloud.gateway.filter.ratelimit.KeyResolver;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.data.redis.core.ReactiveRedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;
import org.springframework.validation.Validator;
import reactor.core.publisher.Mono;
import java.util.List;
@Configuration
public class RequestRateLimiterConfig {
@Bean
@Primary
KeyResolver apiKeyResolver() {
//按URL限流
return exchange -> Mono.just(exchange.getRequest().getPath().toString());
}
@Bean
KeyResolver userKeyResolver() {
//按用户限流
return exchange -> Mono.just(exchange.getRequest().getQueryParams().getFirst("user"));
}
@Bean
KeyResolver ipKeyResolver() {
//按IP来限流
return exchange -> Mono.just(exchange.getRequest().getRemoteAddress().getHostName());
}
@Bean
KeyResolver userLevelKeyResolver() {
//按IP来限流
return exchange -> Mono.just(exchange.getRequest().getHeaders().getFirst("userLevel"));
}
@Bean
@Primary
//使用自己定义的限流类
UserLevelRedisRateLimiter userLevelRedisRateLimiter(
ReactiveRedisTemplate<String, String> redisTemplate,
@Qualifier(UserLevelRedisRateLimiter.REDIS_SCRIPT_NAME) RedisScript<List<Long>> script,
@Qualifier("defaultValidator") Validator validator){
return new UserLevelRedisRateLimiter(redisTemplate , script , validator);
}
}
yml配置
server:
port: 9701
spring:
application:
name: gateway-aop-dev
profiles:
active: dev
index: 62
cloud:
gateway:
discovery:
locator:
enabled: true
# 服务名小写
lower-case-service-id: true
routes:
#与customer.中key相同即是java代码中的routeID
- id: userSev
# lb代表从注册中心获取服务,且已负载均衡方式转发
uri: lb://hello-dev
predicates:
- Path=/hello-dev/**
# 加上StripPrefix=1,否则转发到后端服务时会带上consumer前缀
filters:
- StripPrefix=1
# 限流过滤器,使用gateway内置令牌算法
- name: RequestRateLimiter
args:
# # 令牌桶每秒填充平均速率,即行等价于允许用户每秒处理多少个请求平均数
# redis-rate-limiter.replenishRate: 10
# # 令牌桶的容量,允许在一秒钟内完成的最大请求数
# redis-rate-limiter.burstCapacity: 20
# 用于限流的键的解析器的 Bean 对象的名字。它使用 SpEL 表达式根据#{@beanName}从 Spring 容器中获取 Bean 对象。
key-resolver: "#{@userLevelKeyResolver}"
rate-limiter: "#{@userLevelRedisRateLimiter}"
comsumer:
ratelimiter-conf:
#配置限流参数与RateLimiterConf类映射
rateLimitMap:
#格式为:routeid(gateway配置routes时指定的).系统名称.replenishRate(流速)/burstCapacity令牌桶大小
userSev.A.replenishRate: 10
userSev.A.burstCapacity: 100
userSev.B.replenishRate: 20
userSev.B.burstCapacity: 1000
来源:oschina
链接:https://my.oschina.net/u/4286839/blog/3407735