AttributeError: 'Tensor' object has no attribute '_keras_history' using CRF

牧云@^-^@ 提交于 2021-01-29 21:42:09

问题


I know there are a bunch of questions on this problem and I have read some of those but none of them worked for me.

I am trying to build a model with the following architecture:

The code is as follows:

token_inputs = Input((32,), dtype=tf.int32, name='input_ids')
mask_inputs = Input((32,), dtype=tf.int32, name='attention_mask')
seg_inputs = Input((32,), dtype=tf.int32, name='token_type_ids')

seq_out, _ = bert_model([token_inputs, mask_inputs, seg_inputs])
bd = Bidirectional(LSTM(units=50, return_sequences=True, recurrent_dropout=0.1))(seq_out)
td = TimeDistributed(Dense(50, activation="relu"))(bd)
crf = CRF(n_tags)
out = crf(td)

model = Model([token_inputs, mask_inputs, seg_inputs], out)
model.compile(optimizer='rmsprop', loss=crf_loss, metrics=[crf_viterbi_accuracy])

Whenever I am trying to fit the model, I am getting the following error:

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-158-46bb02fcb4e2> in <module>
----> 1 history = model.fit(train_ds, epochs = 3, validation_data = val_ds)

/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
    106   def _method_wrapper(self, *args, **kwargs):
    107     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
--> 108       return method(self, *args, **kwargs)
    109 
    110     # Running inside `run_distribute_coordinator` already.

/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1096                 batch_size=batch_size):
   1097               callbacks.on_train_batch_begin(step)
-> 1098               tmp_logs = train_function(iterator)
   1099               if data_handler.should_sync:
   1100                 context.async_wait()

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    778       else:
    779         compiler = "nonXla"
--> 780         result = self._call(*args, **kwds)
    781 
    782       new_tracing_count = self._get_tracing_count()

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    812       # In this case we have not created variables on the first call. So we can
    813       # run the first trace but we should fail if variables are created.
--> 814       results = self._stateful_fn(*args, **kwds)
    815       if self._created_variables:
    816         raise ValueError("Creating variables on a non-first call to a function"

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
   2826     """Calls a graph function specialized to the inputs."""
   2827     with self._lock:
-> 2828       graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
   2829     return graph_function._filtered_call(args, kwargs)  # pylint: disable=protected-access
   2830 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   3208           and self.input_signature is None
   3209           and call_context_key in self._function_cache.missed):
-> 3210         return self._define_function_with_shape_relaxation(args, kwargs)
   3211 
   3212       self._function_cache.missed.add(call_context_key)

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs)
   3140 
   3141     graph_function = self._create_graph_function(
-> 3142         args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes)
   3143     self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function
   3144 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3073             arg_names=arg_names,
   3074             override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075             capture_by_value=self._capture_by_value),
   3076         self._function_attributes,
   3077         function_spec=self.function_spec,

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    984         _, original_func = tf_decorator.unwrap(python_func)
    985 
--> 986       func_outputs = python_func(*func_args, **func_kwargs)
    987 
    988       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    598         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    599         # the function a weak reference to itself to avoid a reference cycle.
--> 600         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    601     weak_wrapped_fn = weakref.ref(wrapped_fn)
    602 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    971           except Exception as e:  # pylint:disable=broad-except
    972             if hasattr(e, "ag_error_metadata"):
--> 973               raise e.ag_error_metadata.to_exception(e)
    974             else:
    975               raise

AttributeError: in user code:

    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:806 train_function  *
        return step_function(self, iterator)
    /opt/conda/lib/python3.7/site-packages/keras_contrib/losses/crf_losses.py:54 crf_loss  *
        crf, idx = y_pred._keras_history[:2]

    AttributeError: 'Tensor' object has no attribute '_keras_history'

All of my imports are as follows:

import numpy as np # linear algebra
import pandas as pd 
import tensorflow as tf
import matplotlib.pyplot as plt

from transformers import BertTokenizer, TFBertModel, BertConfig

# for building the model
import tensorflow as tf
from keras.layers import Dense, Input, Dropout, GlobalAveragePooling1D, LSTM,TimeDistributed, Bidirectional
from keras.models import Model
from keras.callbacks import EarlyStopping

from keras.utils import to_categorical
from sklearn.model_selection import train_test_split

from keras_contrib.layers import CRF
from keras_contrib.losses import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy

Can you please help me?

来源:https://stackoverflow.com/questions/64320212/attributeerror-tensor-object-has-no-attribute-keras-history-using-crf

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!