Yet another “Error when checking target: expected dense_2 to have shape (4,) but got array with shape (1,)”

三世轮回 提交于 2021-01-29 19:30:35

问题


I'm using Keras in Python 3. The issue I'm having seems to be similar to many others, and the best I can tell I might need to use Flatten(), though I am not seeing how to set the parameters correctly. I get the error:

ValueError: Error when checking target: expected dense_2 to have shape (4,) but got array with shape (1,)

My data is not of images (yet) but they are sequences I've turned in to data frames.

model = Sequential()
model.add(Dense(30, input_dim=16, activation='relu'))
model.add(Dense(len(TheBinsizeList), activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])


model.fit(Train_Columns, TrainTarget_Columns.to_frame(), epochs=100, batch_size=64)

print(Train_Columns.shape)
# Gives a value of (1627, 16)


print((TrainTarget_Columns.to_frame()).shape)
# Gives a value of (1627,1)

Now the value of TrainTarget_Columns are 1627 of these two tuples:

(1494, 3) (1080, 2) (1863, 2) (919, 4) (1700, 2) (710, 4) (1365, 4) (1815, 3) (1477, 2) (1618, 1)...

The subject number is the first entry in each of the tuble, and the second entry is the value that is the training target.

While I see that changing TheBinsizeList from 4 to 2 in dense_2 causes the expected shape to go from (4,) to (2,) I don't see how to use Flatten (if that is what is needed) to correctly format the values.

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_1 (Dense)              (None, 30)                510       
_________________________________________________________________
dense_2 (Dense)              (None, 4)                 124       
=================================================================
Total params: 634
Trainable params: 634
Non-trainable params: 0

Any help is appreciated and thanks.


回答1:


Considering your model summary, the model expects an input of shape (batch_size, 16) and a target of shape (batch_size, 4).

If your target's shape is (1627,1) there is your problem.

Solution: Change it to a one hot variable (e.g. using tf.one_hot(y, n_classes)) and the error should disappear

import numpy as np
import tensorflow as tf

input_dim = 16
hidden_dim = 30
n_classes = 4

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(hidden_dim, input_dim=input_dim, activation='relu'))
model.add(tf.keras.layers.Dense(n_classes, input_dim=hidden_dim, activation='relu'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

X = np.random.randn(100, input_dim)
y = np.random.randint(0, n_classes, size=(100,))

model.fit(X, y)
# ValueError: Shapes (None, 1) and (None, 4) are incompatible

y = tf.one_hot(y, n_classes)
model.fit(X, y)
# Works !


来源:https://stackoverflow.com/questions/64223156/yet-another-error-when-checking-target-expected-dense-2-to-have-shape-4-but

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!