Custom max_pool layer: ValueError: The channel dimension of the inputs should be defined. Found `None`

a 夏天 提交于 2021-01-29 17:26:50

问题


I am working on tensorflow2 and I am trying to implement Max unpool with indices to implement SegNet.

When I run it I get the following problem. I am defining the def MaxUnpool2D and then calling it in the model. I suppose that the problem is given by the fact that updates and mask have got shape (None, H,W,ch).

def MaxUnpooling2D(updates, mask):
    size = 2
    mask = tf.cast(mask, 'int32')
    input_shape = tf.shape(updates, out_type='int32')

    #  calculation new shape
    output_shape = (
            input_shape[0],
            input_shape[1]*size,
            input_shape[2]*size,
            input_shape[3])
    # calculation indices for batch, height, width and feature maps
    one_like_mask = tf.ones_like(mask, dtype='int32')
    batch_shape = tf.concat(
            [[input_shape[0]], [1], [1], [1]],
            axis=0)
    batch_range = tf.reshape(
            tf.range(output_shape[0], dtype='int32'),
            shape=batch_shape)
    b = one_like_mask * batch_range
    y = mask // (output_shape[2] * output_shape[3])
    x = (mask // output_shape[3]) % output_shape[2]
    feature_range = tf.range(output_shape[3], dtype='int32')
    f = one_like_mask * feature_range
    updates_size = tf.size(updates)
    indices = K.transpose(K.reshape(
        tf.stack([b, y, x, f]),
        [4, updates_size]))
    values = tf.reshape(updates, [updates_size])
    return tf.scatter_nd(indices, values, output_shape)

def segnet_conv(
        inputs,
        kernel_size=3,
        kernel_initializer='glorot_uniform',
        batch_norm = False,
        **kwargs):
    conv1 = Conv2D(
            filters=64,
            kernel_size=kernel_size,
            padding='same',
            activation=None,
            kernel_initializer=kernel_initializer,
            name='conv_1'
        )(inputs)

    if batch_norm:
        conv1 = BatchNormalization(name='bn_1')(conv1)
    conv1 = LeakyReLU(alpha=0.3, name='activation_1')(conv1)

    conv1 = Conv2D(
            filters=64,
            kernel_size=kernel_size,
            padding='same',
            activation=None,
            kernel_initializer=kernel_initializer,
            name='conv_2'
        )(conv1)

    if batch_norm:
        conv1 = BatchNormalization(name='bn_2')(conv1)
    conv1 = LeakyReLU(alpha=0.3, name='activation_2')(conv1)

    pool1, mask1 = tf.nn.max_pool_with_argmax(
            input=conv1,
            ksize=2,
            strides=2,
            padding='SAME'
        ) 
    def segnet_deconv(
            pool1,
            mask1,
            kernel_size=3,
            kernel_initializer='glorot_uniform',
            batch_norm = False,
            **kwargs
        ):

    dec = MaxUnpooling2D(pool5, mask5)

    dec = Conv2D(
            filters=512,
            kernel_size=kernel_size,
            padding='same',
            activation=None,
            kernel_initializer=kernel_initializer,
            name='upconv_13'
        )(dec)

def classifier(
    dec,
    ch_out=2,
    kernel_size=3,
    final_activation=None,
    batch_norm = False,
    **kwargs
):
    dec = Conv2D(
        filters=64,
        kernel_size=kernel_size,
        activation='relu',
        padding='same',
        name='dec_out1'
    )(dec)
    @tf.function
def segnet(
        inputs,
        ch_out=2,
        kernel_size=3,
        kernel_initializer='glorot_uniform',
        final_activation=None,
        batch_norm = False,
        **kwargs
        ):

    pool5, mask1, mask2, mask3, mask4, mask5 = segnet_conv(
                                inputs,
                                kernel_size=3,
                                kernel_initializer='glorot_uniform',
                                batch_norm = False
                            )
    dec = segnet_deconv(
                pool5,
                mask1,
                mask2,
                mask3,
                mask4,
                mask5,
                kernel_size=kernel_size,
                kernel_initializer=kernel_initializer,
                batch_norm = batch_norm
            )

    output = classifier(
                dec,
                ch_out=2,
                kernel_size=3,
                final_activation=None,
                batch_norm = batch_norm
            )
    return output
inputs = Input(shape=(*params['image_size'], params['num_channels']), name='input')
outputs = segnet(inputs, n_labels=2, kernel=3, pool_size=(2, 2), output_mode=None)
             # we define our U-Net to output logits
model = Model(inputs, outputs)

Can you please help me with this problem?


回答1:


I have solved the problem. If someone will need here is the code for MaxUnpooling2D:

def MaxUnpooling2D(pool, ind, output_shape, batch_size, name=None):
"""
   Unpooling layer after max_pool_with_argmax.
   Args:
       pool:   max pooled output tensor
       ind:      argmax indices
       ksize:     ksize is the same as for the pool
   Return:
       unpool:    unpooling tensor
       :param batch_size:
"""
with tf.compat.v1.variable_scope(name):
    pool_ = tf.reshape(pool, [-1])
    batch_range = tf.reshape(tf.range(batch_size, dtype=ind.dtype), [tf.shape(pool)[0], 1, 1, 1])
    b = tf.ones_like(ind) * batch_range
    b = tf.reshape(b, [-1, 1])
    ind_ = tf.reshape(ind, [-1, 1])
    ind_ = tf.concat([b, ind_], 1)
    ret = tf.scatter_nd(ind_, pool_, shape=[batch_size, output_shape[1] * output_shape[2] * output_shape[3]])
    # the reason that we use tf.scatter_nd: if we use tf.sparse_tensor_to_dense, then the gradient is None, which will cut off the network.
    # But if we use tf.scatter_nd, the gradients for all the trainable variables will be tensors, instead of None.
    # The usage for tf.scatter_nd is that: create a new tensor by applying sparse UPDATES(which is the pooling value) to individual values of slices within a
    # zero tensor of given shape (FLAT_OUTPUT_SHAPE) according to the indices (ind_). If we ues the orignal code, the only thing we need to change is: changeing
    # from tf.sparse_tensor_to_dense(sparse_tensor) to tf.sparse_add(tf.zeros((output_sahpe)),sparse_tensor) which will give us the gradients!!!
    ret = tf.reshape(ret, [tf.shape(pool)[0], output_shape[1], output_shape[2], output_shape[3]])
    return ret


来源:https://stackoverflow.com/questions/60104102/custom-max-pool-layer-valueerror-the-channel-dimension-of-the-inputs-should-be

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!