问题
From a list
of values, I try to identify any sequential pair of values whose sum exceeds 10
a = [1,9,3,4,5]
...so I wrote a for
loop...
values = []
for i in range(len(a)-2):
if sum(a[i:i+2]) >10:
values += [a[i:i+2]]
...which I rewritten as a list comprehension...
values = [a[i:i+2] for i in range(len(a)-2) if sum(a[i:i+2]) >10]
Both produce same output:
values = [[1,9], [9,3]]
My question is how best may I apply the above list comprehension in a DataFrame.
Here is the sample 5 rows DataFrame
import pandas as pd
df = pd.DataFrame({'A': [1,1,1,1,0],
'B': [9,8,3,2,2],
'C': [3,3,3,10,3],
'E': [4,4,4,4,4],
'F': [5,5,5,5,5]})
df['X'] = df.values.tolist()
where:
- a is within a df['X']
which is a list of values Columns A - F
df['X'] = [[1,9,3,4,5],[1,8,3,4,5],[1,3,3,4,5],[1,2,10,4,5],[0,2,3,4,5]]
- and, result of the list comprehension is to be store in new column
df['X1]
Desired output is:
df['X1'] = [[[1,9], [9,3]],[[8,3]],[[NaN]],[[2,10],[10,4]],[[NaN]]]
Thank you.
回答1:
You could use pandas apply function, and put your list comprehension in it.
df = pd.DataFrame({'A': [1,1,1,1,0],
'B': [9,8,3,2,2],
'C': [3,3,3,10,3],
'E': [4,4,4,4,4],
'F': [5,5,5,5,5]})
df['x'] = df.apply(lambda a: [a[i:i+2] for i in range(len(a)-2) if sum(a[i:i+2]) >= 10], axis=1)
#Note the axis parameters tells if you want to apply this function by rows or by columns, axis = 1 applies the function to each row.
This will give the output as stated in df['X1']
来源:https://stackoverflow.com/questions/62118556/how-to-apply-a-list-comprehension-in-panda-dataframe