问题
I have an ArviZ InferenceData posterior trace which is an XArray Dataset.
In there, posterior traces for two of my random variables, a_mu_org
and b_mu_org
are DataArrays. Their coordinates are:
a_mu_org
: (chain
,draws
,a_mu_org
), with lengths (1, 2000, 15) respectively.b_mu_org
: (chain
,draws
,b_mu_org
), with lengths (1, 2000, 15) respectively.
Semantically, a_mu_org
and b_mu_org
should really be indexed by a single categorical coordinate system of 15 organisms, rather than be separate indexes.
For a bit more clarity, here is the full dataset string repr:
<xarray.Dataset>
Dimensions: (L_dim_0: 34281, a_dim_0: 456260, a_prot_shift_dim_0: 34281, b_dim_0: 456260, b_mu_org_dim_0: 15, b_prot_shift_dim_0: 34281, chain: 1, draw: 2000, organism: 15, sigma_dim_0: 34281, t50_org_dim_0: 15, t50_prot_dim_0: 39957)
Coordinates:
* chain (chain) int64 0
* draw (draw) int64 0 1 2 3 4 5 ... 1995 1996 1997 1998 1999
* a_prot_shift_dim_0 (a_prot_shift_dim_0) object 'A0A023PXQ4_YMR173W-A' ... 'Z4YNA9_AB124611'
* b_prot_shift_dim_0 (b_prot_shift_dim_0) object 'A0A023PXQ4_YMR173W-A' ... 'Z4YNA9_AB124611'
* L_dim_0 (L_dim_0) object 'A0A023PXQ4_YMR173W-A' ... 'Z4YNA9_AB124611'
a_mu_org_dim_0 (organism) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* a_dim_0 (a_dim_0) object 'ytzI' 'mtlF' ... 'atpG2' 'atpB2'
* b_mu_org_dim_0 (b_mu_org_dim_0) int64 0 1 2 3 4 5 ... 9 10 11 12 13 14
* b_dim_0 (b_dim_0) object 'ytzI' 'mtlF' ... 'atpG2' 'atpB2'
* t50_prot_dim_0 (t50_prot_dim_0) <U65 'Bacillus subtilis_168_lysate_R1-C0H3Q1_ytzI' ... 'Oleispira antarctica_RB-8_lysate_R1-R4YVF0_atpB2'
* t50_org_dim_0 (t50_org_dim_0) <U43 'Arabidopsis thaliana seedling lysate' ... 'Thermus thermophilus HB27 lysate'
* sigma_dim_0 (sigma_dim_0) object 'A0A023PXQ4_YMR173W-A' ... 'Z4YNA9_AB124611'
Dimensions without coordinates: organism
Data variables:
a_org_pop (chain, draw) float32 519.3236 518.8292 ... 517.84784
a_prot_shift (chain, draw, a_prot_shift_dim_0) float32 ...
b_org_pop (chain, draw) float32 11.509291 11.445394 ... 11.929538
b_prot_shift (chain, draw, b_prot_shift_dim_0) float32 ...
L_pop (chain, draw) float32 3.445896 3.4300675 ... 3.3917112
L (chain, draw, L_dim_0) float32 ...
a_mu_org (chain, draw, organism) float32 430.56827 ... 813.2518
a (chain, draw, a_dim_0) float32 ...
b_mu_org (chain, draw, b_mu_org_dim_0) float32 9.997488 ... 8.389757
b (chain, draw, b_dim_0) float32 ...
t50_prot (chain, draw, t50_prot_dim_0) float32 39.249863 ... 52.19809
t50_org (chain, draw, t50_org_dim_0) float32 43.067646 ... 96.93388
sigma (chain, draw, sigma_dim_0) float32 ...
Attributes:
created_at: 2020-04-23T08:54:58.300091
arviz_version: 0.7.0
inference_library: pymc3
inference_library_version: 3.8
I would like to make a_mu_org
and b_mu_org
take on dimensions (chain
, draw
, organism
) instead of their separate a_mu_org
and b_mu_org
. Things I have already tried include:
- Adding a coordinate called
organism
, and then doingtrace.posterior.swap_dims({"a_mu_org_dim_0": "organism"})
, but I get an error stating that "replacement dimension 'organism' is not a 1D variable along the old dimension 'a_mu_org_dim_0'". - Renaming the dimension
a_mu_org_dim_0
toorganism
, but then I also can't swapb_mu_org_dim_0
to the neworganism
.
Is what I'm trying to accomplish possible?
回答1:
I am not sure my solution is very good practice, it feels a little too hacky. Also, terminology is quite tricky, I'll try to stick to xarray terminology but may fail in doing so. The trick is to remove the coordinates so that a_dim_0
and b_dim_0
become only dimensions (now dimensions without coordinates). Afterwards, they can be renamed to the same thing and assigned to a new coord. Here is one example:
Starting from the following dataset called ds
:
<xarray.Dataset>
Dimensions: (a_dim_0: 15, b_dim_0: 15, chain: 4, draw: 100)
Coordinates:
* chain (chain) int64 0 1 2 3
* draw (draw) int64 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
* a_dim_0 (a_dim_0) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* b_dim_0 (b_dim_0) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Data variables:
a (chain, draw, a_dim_0) float64 0.8152 1.189 ... 1.32 -0.2023
b (chain, draw, b_dim_0) float64 0.6447 -0.8059 ... -0.06435 -0.8666
the following 3 commands do the trick (the place of the assign_coord
does not seem to affect the output, which makes sense, but it is key to first remove coordinates and then rename):
organism_names = [f"o{i}" for i in range(15)]
ds.reset_index(["a_dim_0", "b_dim_0"], drop=True) \
.assign_coords(organism=organism_names) \
.rename({"a_dim_0": "organism", "b_dim_0": "organism"})
Output:
<xarray.Dataset>
Dimensions: (chain: 4, draw: 100, organism: 15)
Coordinates:
* chain (chain) int64 0 1 2 3
* draw (draw) int64 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
* organism (organism) <U3 'o0' 'o1' 'o2' 'o3' ... 'o11' 'o12' 'o13' 'o14'
Data variables:
a (chain, draw, organism) float64 0.8152 1.189 ... 1.32 -0.2023
b (chain, draw, organism) float64 0.6447 -0.8059 ... -0.8666
来源:https://stackoverflow.com/questions/61827061/xarray-make-two-dataarrays-in-the-same-dataset-use-the-same-coordinate-system