问题
I'm able to use numpy.polynomial
to fit terms to 1D polynomials like f(x) = 1 + x + x^2
. How can I fit multidimensional polynomials, like f(x,y) = 1 + x + x^2 + y + yx + y x^2 + y^2 + y^2 x + y^2 x^2
? It looks like numpy doesn't support multidimensional polynomials at all: is that the case? In my real application, I have 5 dimensions of input and I am interested in hermite polynomials. It looks like the polynomials in scipy.special
are also only available for one dimension of inputs.
# One dimension of data can be fit
x = np.random.random(100)
y = np.sin(x)
params = np.polynomial.polynomial.polyfit(x, y, 6)
np.polynomial.polynomial.polyval([0, .2, .5, 1.5], params)
array([ -5.01799432e-08, 1.98669317e-01, 4.79425535e-01,
9.97606096e-01])
# When I try two dimensions, it fails.
x = np.random.random((100, 2))
y = np.sin(5 * x[:,0]) + .4 * np.sin(x[:,1])
params = np.polynomial.polynomial.polyvander2d(x, y, [6, 6])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-13-5409f9a3e632> in <module>()
----> 1 params = np.polynomial.polynomial.polyvander2d(x, y, [6, 6])
/usr/local/lib/python2.7/site-packages/numpy/polynomial/polynomial.pyc in polyvander2d(x, y, deg)
1201 raise ValueError("degrees must be non-negative integers")
1202 degx, degy = ideg
-> 1203 x, y = np.array((x, y), copy=0) + 0.0
1204
1205 vx = polyvander(x, degx)
ValueError: could not broadcast input array from shape (100,2) into shape (100)
回答1:
It doesn't look like polyfit supports fitting multivariate polynomials, but you can do it by hand, with linalg.lstsq
. The steps are as follows:
Gather the degrees of monomials
x**i * y**j
you wish to use in the model. Think carefully about it: your current model already has 9 parameters, if you are going to push to 5 variables then with the current approach you'll end up with 3**5 = 243 parameters, a sure road to overfitting. Maybe limit to the monomials of __total_ degree at most 2 or three...Plug the x-points into each monomial; this gives a 1D array. Stack all such arrays as columns of a matrix.
Solve a linear system with aforementioned matrix and with the right-hand side being the target values (I call them z because y is confusing when you also use x, y for two variables).
Here it is:
import numpy as np
x = np.random.random((100, 2))
z = np.sin(5 * x[:,0]) + .4 * np.sin(x[:,1])
degrees = [(i, j) for i in range(3) for j in range(3)] # list of monomials x**i * y**j to use
matrix = np.stack([np.prod(x**d, axis=1) for d in degrees], axis=-1) # stack monomials like columns
coeff = np.linalg.lstsq(matrix, z)[0] # lstsq returns some additional info we ignore
print("Coefficients", coeff) # in the same order as the monomials listed in "degrees"
fit = np.dot(matrix, coeff)
print("Fitted values", fit)
print("Original values", y)
回答2:
I got annoyed that there is no simple function for a 2d polynomial fit of any number of degrees so I made my own. Like the other answers it uses numpy lstsq to find the best coefficients.
import numpy as np
from scipy.linalg import lstsq
from scipy.special import binom
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def _get_coeff_idx(coeff):
idx = np.indices(coeff.shape)
idx = idx.T.swapaxes(0, 1).reshape((-1, 2))
return idx
def _scale(x, y):
# Normalize x and y to avoid huge numbers
# Mean 0, Variation 1
offset_x, offset_y = np.mean(x), np.mean(y)
norm_x, norm_y = np.std(x), np.std(y)
x = (x - offset_x) / norm_x
y = (y - offset_y) / norm_y
return x, y, (norm_x, norm_y), (offset_x, offset_y)
def _unscale(x, y, norm, offset):
x = x * norm[0] + offset[0]
y = y * norm[1] + offset[1]
return x, y
def polyvander2d(x, y, degree):
A = np.polynomial.polynomial.polyvander2d(x, y, degree)
return A
def polyscale2d(coeff, scale_x, scale_y, copy=True):
if copy:
coeff = np.copy(coeff)
idx = _get_coeff_idx(coeff)
for k, (i, j) in enumerate(idx):
coeff[i, j] /= scale_x ** i * scale_y ** j
return coeff
def polyshift2d(coeff, offset_x, offset_y, copy=True):
if copy:
coeff = np.copy(coeff)
idx = _get_coeff_idx(coeff)
# Copy coeff because it changes during the loop
coeff2 = np.copy(coeff)
for k, m in idx:
not_the_same = ~((idx[:, 0] == k) & (idx[:, 1] == m))
above = (idx[:, 0] >= k) & (idx[:, 1] >= m) & not_the_same
for i, j in idx[above]:
b = binom(i, k) * binom(j, m)
sign = (-1) ** ((i - k) + (j - m))
offset = offset_x ** (i - k) * offset_y ** (j - m)
coeff[k, m] += sign * b * coeff2[i, j] * offset
return coeff
def plot2d(x, y, z, coeff):
# regular grid covering the domain of the data
if x.size > 500:
choice = np.random.choice(x.size, size=500, replace=False)
else:
choice = slice(None, None, None)
x, y, z = x[choice], y[choice], z[choice]
X, Y = np.meshgrid(
np.linspace(np.min(x), np.max(x), 20), np.linspace(np.min(y), np.max(y), 20)
)
Z = np.polynomial.polynomial.polyval2d(X, Y, coeff)
fig = plt.figure()
ax = fig.gca(projection="3d")
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, alpha=0.2)
ax.scatter(x, y, z, c="r", s=50)
plt.xlabel("X")
plt.ylabel("Y")
ax.set_zlabel("Z")
plt.show()
def polyfit2d(x, y, z, degree=1, max_degree=None, scale=True, plot=False):
"""A simple 2D polynomial fit to data x, y, z
The polynomial can be evaluated with numpy.polynomial.polynomial.polyval2d
Parameters
----------
x : array[n]
x coordinates
y : array[n]
y coordinates
z : array[n]
data values
degree : {int, 2-tuple}, optional
degree of the polynomial fit in x and y direction (default: 1)
max_degree : {int, None}, optional
if given the maximum combined degree of the coefficients is limited to this value
scale : bool, optional
Wether to scale the input arrays x and y to mean 0 and variance 1, to avoid numerical overflows.
Especially useful at higher degrees. (default: True)
plot : bool, optional
wether to plot the fitted surface and data (slow) (default: False)
Returns
-------
coeff : array[degree+1, degree+1]
the polynomial coefficients in numpy 2d format, i.e. coeff[i, j] for x**i * y**j
"""
# Flatten input
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
z = np.asarray(z).ravel()
# Remove masked values
mask = ~(np.ma.getmask(z) | np.ma.getmask(x) | np.ma.getmask(y))
x, y, z = x[mask].ravel(), y[mask].ravel(), z[mask].ravel()
# Scale coordinates to smaller values to avoid numerical problems at larger degrees
if scale:
x, y, norm, offset = _scale(x, y)
if np.isscalar(degree):
degree = (int(degree), int(degree))
degree = [int(degree[0]), int(degree[1])]
coeff = np.zeros((degree[0] + 1, degree[1] + 1))
idx = _get_coeff_idx(coeff)
# Calculate elements 1, x, y, x*y, x**2, y**2, ...
A = polyvander2d(x, y, degree)
# We only want the combinations with maximum order COMBINED power
if max_degree is not None:
mask = idx[:, 0] + idx[:, 1] <= int(max_degree)
idx = idx[mask]
A = A[:, mask]
# Do the actual least squares fit
C, *_ = lstsq(A, z)
# Reorder coefficients into numpy compatible 2d array
for k, (i, j) in enumerate(idx):
coeff[i, j] = C[k]
# Reverse the scaling
if scale:
coeff = polyscale2d(coeff, *norm, copy=False)
coeff = polyshift2d(coeff, *offset, copy=False)
if plot:
if scale:
x, y = _unscale(x, y, norm, offset)
plot2d(x, y, z, coeff)
return coeff
if __name__ == "__main__":
n = 100
x, y = np.meshgrid(np.arange(n), np.arange(n))
z = x ** 2 + y ** 2
c = polyfit2d(x, y, z, degree=2, plot=True)
print(c)
回答3:
I believe you have misunderstood what polyvander2d
does and how it should be used. polyvander2d()
returns the pseudo-Vandermonde matrix of degrees deg
and sample points (x, y)
.
Here, y
is not the value(s) of the polynomial at point(s) x
but rather it is the y
-coordinate of the point(s) and x
is the x
-coordinate. Roughly speaking, the returned array is a set of combinations of (x**i) * (y**j)
and x
and y
are essentially 2D "mesh-grids". Therefore, both x
and y
must have identical shapes.
Your x
and y
, however, arrays have different shapes:
>>> x.shape
(100, 2)
>>> y.shape
(100,)
I do not believe numpy
has a 5D-polyvander
of the form polyvander5D(x, y, z, v, w, deg)
. Notice, all the variables here are coordinates and not the values of the polynomial p=p(x,y,z,v,w)
. You, however, seem to be using y
(in the 2D case) as f
.
It appears that numpy
does not have 2D or higher equivalents for the polyfit()
function. If your intention is to find the coefficients of the best-fitting polynomial in higher-dimensions, I would suggest that you generalize the approach described here: Equivalent of `polyfit` for a 2D polynomial in Python
回答4:
The option isn't there because nobody wants to do that. Combine the polynomials linearly (f(x,y) = 1 + x + y + x^2 + y^2
) and solve the system of equations yourself.
来源:https://stackoverflow.com/questions/48180041/how-can-i-use-multiple-dimensional-polynomials-with-numpy-polynomial