How to allocate memory in a DriverKit system extension and map it to another process?

耗尽温柔 提交于 2021-01-28 04:41:20

问题


I have allocated memory in my application and passed its pointer and size to IOConnectCallStructMethod. Using IOMemoryDescriptor::CreateMapping I have then mapped this memory to the DriverKit system extension process, and it is possible to write to this mapped memory location and read the data from my application.

I would now like to do something similar for memory that is allocated in the system extension, and then map it to the application that is using the system extension. I would like to create a set of memory buffers in the system extension, and then write to it from the application and then signal to the system extension with IOConnectCallScalarMethod that a given buffer should be sent to the USB device, using IOUSBHostPipe::AsyncIO. When the CompleteAsyncIO callback then comes as a result of the sending completing, I would notify back to the application that it is now possible to copy data to the first buffer that was sent. The mechanism for this could probably be done using IOConnectCallAsyncStructMethod, and the OSAction object that is created in the system extension. What I don't understand is how to map memory allocated in the system extension to the application.


回答1:


This is what IOUserClient::CopyClientMemoryForType in DriverKit is for, which gets invoked when your user process calls IOConnectMapMemory64 from IOKit.framework. The kext equivalent, incidentally, is IOUserClient::clientMemoryForType and essentially works exactly the same.

To make it work, you need to override the CopyClientMemoryForType virtual function in your user client subclass.

In the class definition in .iig:

virtual kern_return_t CopyClientMemoryForType(
    uint64_t type, uint64_t *options, IOMemoryDescriptor **memory) override;

In the implementation .cpp, something along these lines:

kern_return_t IMPL(MyUserClient, CopyClientMemoryForType) //(uint64_t type, uint64_t *options, IOMemoryDescriptor **memory)
{
    kern_return_t res;
    if (type == 0)
    {
        IOBufferMemoryDescriptor* buffer = nullptr;
        res = IOBufferMemoryDescriptor::Create(kIOMemoryDirectionInOut, 128 /* capacity */, 8 /* alignment */, &buffer);
        if (res != kIOReturnSuccess)
        {
            os_log(OS_LOG_DEFAULT, "MyUserClient::CopyClientMemoryForType(): IOBufferMemoryDescriptor::Create failed: 0x%x", res);
        }
        else
        {
            *memory = buffer; // returned with refcount 1
        }
    }
    else
    {
        res = this->CopyClientMemoryForType(type, options, memory, SUPERDISPATCH);
    }
    return res;
}

In user space, you would call:

    mach_vm_address_t address = 0;
    mach_vm_size_t size = 0;
    IOReturn res = IOConnectMapMemory64(connection, 0 /*memoryType*/, mach_task_self(), &address, &size, kIOMapAnywhere);

Some notes on this:

  • The value in the type parameter comes from the memoryType parameter to the IOConnectMapMemory64 call that caused this function to be called. Your driver therefore can have some kind of numbering convention; in the simplest case you can treat it similarly to the selector in external methods.
  • memory is effectively an output parameter and this is where you're expected to return the memory descriptor you want to map into user space when your function returns kIOReturnSuccess. The function has copy semantics, i.e. the caller expects to take ownership of the memory descriptor, i.e. it will eventually drop the reference count by 1 when it is no longer needed. The returned memory descriptor need not be an IOBufferMemoryDescriptor as I've used in the example, it can also be a PCI BAR or whatever.
  • The kIOMapAnywhere option in the IOConnectMapMemory64 call is important and normally what you want: if you don't specify this, the atAddress parameter becomes an in-out parameter, and the caller is expected to select a location in the address space where the driver memory should be mapped. Normally you don't care where this is, and indeed specifying an explicit location can be dangerous if there's already something mapped there.
  • If user space must not write to the mapped memory, set the options parameter to CopyClientMemoryForType accordingly: *options = kIOUserClientMemoryReadOnly;

To destroy the mapping, the user space process must call IOConnectUnmapMemory64().



来源:https://stackoverflow.com/questions/62213115/how-to-allocate-memory-in-a-driverkit-system-extension-and-map-it-to-another-pro

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!