问题
So I am trying to use Pandas to replace all NaN values in a table with the median across a particular range. I am working with a larger dataset but for example
np.random.seed(0)
rng = pd.date_range('2020-09-24', periods=20, freq='0.2H')
df = pd.DataFrame({ 'Date': rng, 'Val': np.random.randn(len(rng)), 'Dist' :np.random.randn(len(rng)) })
df.Dist[df.Dist<=-0.6] = np.nan
df.Val[df.Val<=-0.5] = np.nan
What I want to do is replace the NaN values for Val and Dist with the median value for each hour for that column. I have managed to get the median values in a separate reference table:
df.set_index('Date', inplace=True)
df = df.assign(Hour = lambda x : x.index.hour)
df_val = df[["Val", "Hour"]].groupby("Hour").median()
df_dist = df[["Dist", "Hour"]].groupby("Hour").median()
But now I have tried all of the below commands in various forms and cannot work out how to fill NaN values.
df[["Val","Hour"]].mask(df['Val'].isna(), df_val.iloc[df.Hour], inplace=True)
df.where(df['Val'].notna(), other=df_val[df.Hour],axis = 0)
df["Val"] = np.where(df['Val'].notna(), df['Val'], df_val(df.Hour))
df.replace({"Val":{np.nan:df_val[df.Hour]}, "Dist":{np.nan:df_dist[df.Hour]}})
回答1:
You can use groupby.transform
and fillna:
cols = ['Val','Dist']
df[cols] = df[cols].fillna(df.groupby(df.Date.dt.floor('H'))
[cols].transform('median')
)
Output:
Date Val Dist
0 2020-09-24 00:00:00 1.764052 0.864436
1 2020-09-24 00:12:00 0.400157 0.653619
2 2020-09-24 00:24:00 0.978738 0.864436
3 2020-09-24 00:36:00 2.240893 0.864436
4 2020-09-24 00:48:00 1.867558 2.269755
5 2020-09-24 01:00:00 0.153690 0.757559
6 2020-09-24 01:12:00 0.950088 0.045759
7 2020-09-24 01:24:00 -0.151357 -0.187184
8 2020-09-24 01:36:00 -0.103219 1.532779
9 2020-09-24 01:48:00 0.410599 1.469359
10 2020-09-24 02:00:00 0.144044 0.154947
11 2020-09-24 02:12:00 1.454274 0.378163
12 2020-09-24 02:24:00 0.761038 0.154947
13 2020-09-24 02:36:00 0.121675 0.154947
14 2020-09-24 02:48:00 0.443863 -0.347912
15 2020-09-24 03:00:00 0.333674 0.156349
16 2020-09-24 03:12:00 1.494079 1.230291
17 2020-09-24 03:24:00 -0.205158 1.202380
18 2020-09-24 03:36:00 0.313068 -0.387327
19 2020-09-24 03:48:00 0.323371 -0.302303
回答2:
You can use a groupby -> transform
operation, while also utilizing the pd.Grouper
class to perform the hourly conversion. This will essentially create a dataframe with the same shape as your original with the hourly medians. Once you have this, you can directly use DataFrame.fillna
hourly_medians = df.groupby(pd.Grouper(key="Date", freq="H")).transform("median")
out = df.fillna(hourly_medians)
print(out)
Date Val Dist
0 2020-09-24 00:00:00 1.764052 0.864436
1 2020-09-24 00:12:00 0.400157 0.653619
2 2020-09-24 00:24:00 0.978738 0.864436
3 2020-09-24 00:36:00 2.240893 0.864436
4 2020-09-24 00:48:00 1.867558 2.269755
5 2020-09-24 01:00:00 0.153690 0.757559
6 2020-09-24 01:12:00 0.950088 0.045759
7 2020-09-24 01:24:00 -0.151357 -0.187184
8 2020-09-24 01:36:00 -0.103219 1.532779
9 2020-09-24 01:48:00 0.410599 1.469359
10 2020-09-24 02:00:00 0.144044 0.154947
11 2020-09-24 02:12:00 1.454274 0.378163
12 2020-09-24 02:24:00 0.761038 0.154947
13 2020-09-24 02:36:00 0.121675 0.154947
14 2020-09-24 02:48:00 0.443863 -0.347912
15 2020-09-24 03:00:00 0.333674 0.156349
16 2020-09-24 03:12:00 1.494079 1.230291
17 2020-09-24 03:24:00 -0.205158 1.202380
18 2020-09-24 03:36:00 0.313068 -0.387327
19 2020-09-24 03:48:00 0.323371 -0.302303
回答3:
Using what you've done, I'd do this:
df.Val = df.Val.fillna(df.Hour.map(df_val.squeeze()))
df.Dist = df.Val.fillna(df.Hour.map(df_dist.squeeze()))
来源:https://stackoverflow.com/questions/64859946/replace-nan-value-with-a-median