问题
I have pyspark code like this,
spark_df = spark_df.orderBy('id', 'a1', 'c1')
out_df = spark_df.groupBy('id', 'a1', 'a2').agg(
F.first('c1').alias('c1'),
F.last('c2').alias('c2'),
F.first('c3').alias('c3'))
I need to keep the data ordered in the order id, a1 and c1. Then select columns as shown above over the group defined over the keys id, a1 and c1.
Due to first and last non-determinism I changed the code to this ugly looking code which works but I'm not sure that is efficient.
w_first = Window.partitionBy('id', 'a1', 'a2').orderBy('c1')
w_last = Window.partitionBy('id', 'a1', 'a2').orderBy(F.desc('c1'))
out_first = spark_df.withColumn('Rank_First', F.rank().over(w_first)).filter(F.col('Rank_First') == 1).drop(
'Rank_First')
out_last = spark_df.withColumn('Rank_Last', F.rank().over(w_last)).filter(F.col('Rank_First') == 1).drop(
'Rank_Last')
out_first = out_first.withColumnRenamed('c1', 'First_c1') \
.withColumnRenamed('c2', 'First_c2') \
.withColumnRenamed('c3', 'First_c3')
out_last = out_last.withColumnRenamed('c1', 'Last_c1') \
.withColumnRenamed('c2', 'Last_c2') \
.withColumnRenamed('c3', 'Last_c3')
out_df = out_first.join(out_last, ['id', 'a1', 'a2']) \
.select('id', 'a1', 'a2', F.col('First_c1').alias('c1'),
F.col('Last_c2').alias('c2'),
F.col('First_c3').alias('c3'))
I was trying for a better and efficient alternative. I run in to bottle necks in performance when data size is huge.
Is there a better alternative to do first and last over a window ordered in a specific order in one go.
回答1:
You could still guarantee determinism for last
and first
functions by using Window
with ordering and you need to define bounds with rowsBetween
when specifying the Window so that last
gives the correct values (as per this post).
Try this:
w = Window.partitionBy('id', 'a1', 'a2').orderBy('c1') \
.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
df = df.withColumn("First_c1", first("c1").over(w)) \
.withColumn("First_c3", first("c3").over(w)) \
.withColumn("Last_c2", last("c2").over(w))
df.groupby("id", "a1", "a2")\
.agg(first("First_c1").alias("c1"),
first("Last_c2").alias("c2"),
first("First_c3").alias("c3")
).show()
来源:https://stackoverflow.com/questions/60151709/pyspark-first-and-last-function-over-a-partition-in-one-go