Python(Pandas) fills blanks cells

假装没事ソ 提交于 2021-01-27 15:51:55

问题


I am using Python(Pandas) to manipulate high frequency data. Basically, I need to fill the blank cells.

If the this row is blank, then this row will be filled in with the previous existed observation.

My original data example:

Time    bid    ask    
15:00    .      .
15:00    .      .
15:02    76     .
15:02    .      77
15:03    .      .
15:03    78     .
15:04    .      .
15:05    .      80
15:05    .      .
15:05    .      .

needs to converted to

Time    bid    ask    
15:00    .      .
15:00    .      .
15:02    76     .
15:00    76     77
15:00    76     77
15:00    78     77
15:00    78     77
15:00    78     80
15:05    78     80
15:05    78     80

This is my code:

#Import
tan=pd.read_csv('sample.csv')

#From here fill the blank cells

first_line = True
mydata = []
with open(tan, 'rb') as f:
    reader = csv.reader(f)
# loop through each row...
for row in reader:
    this_row = row
    # now do the blank-cell checking...
    if first_line:
        for colnos in range(len(this_row)):
            if this_row[colnos] == '':
                this_row[colnos] = 0
        first_line = False
    else:
        for colnos in range(len(this_row)):
            if this_row[colnos] == '':
                this_row[colnos] = prev_row[colnos]
    mydata.append( [this_row] )
    prev_row = this_row

However, the code does not work.

System indicates:

TypeError: coercing to Unicode: need string or buffer, DataFrame found

I really appreciated if your can help me to solve this issue. Thanks.


回答1:


Use fillna() property. You can specify the method as forward fill as follows

import pandas as pd
data = pd.read_csv('sample.csv')
data = data.fillna(method='ffill') # This one forward fills all the columns.
# You can also apply to specific columns as below
# data[['bid','ask']] = data[['bid','ask']].fillna(method='ffill')
print data
    Time  bid      ask    
0  15:00  NaN      NaN
1  15:00  NaN      NaN
2  15:02   76      NaN
3  15:02   76       77
4  15:03   76       77
5  15:03   78       77
6  15:04   78       77
7  15:05   78       80
8  15:05   78       80
9  15:05   78       80



回答2:


There is the lesser known ffill method:

In [102]:
df.ffill()

Out[102]:
    Time  bid  ask
0  15:00  NaN  NaN
1  15:00  NaN  NaN
2  15:02   76  NaN
3  15:02   76   77
4  15:03   76   77
5  15:03   78   77
6  15:04   78   77
7  15:05   78   80
8  15:05   78   80
9  15:05   78   80


来源:https://stackoverflow.com/questions/31470551/pythonpandas-fills-blanks-cells

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!