How can see the SQL statements that SPARK sends to my database?

末鹿安然 提交于 2021-01-27 06:16:46

问题


I have a spark cluster and a vertica database. I use

spark.read.jdbc( # etc

to load Spark dataframes into the cluster. When I do a certain groupby function

df2 = df.groupby('factor').agg(F.stddev('sum(PnL)'))
df2.show()

I then get a vertica syntax exception

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1890)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1903)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1916)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:347)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:39)
    at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2193)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
    at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2546)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2192)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2199)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1935)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1934)
    at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2576)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:1934)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2149)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:239)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.sql.SQLSyntaxErrorException: [Vertica][VJDBC](4856) ERROR: Syntax error at or near "Window"
    at com.vertica.util.ServerErrorData.buildException(Unknown Source)
    at com.vertica.io.ProtocolStream.readExpectedMessage(Unknown Source)
    at com.vertica.dataengine.VDataEngine.prepareImpl(Unknown Source)
    at com.vertica.dataengine.VDataEngine.prepare(Unknown Source)
    at com.vertica.dataengine.VDataEngine.prepare(Unknown Source)
    at com.vertica.jdbc.common.SPreparedStatement.<init>(Unknown Source)
    at com.vertica.jdbc.jdbc4.S4PreparedStatement.<init>(Unknown Source)
    at com.vertica.jdbc.VerticaJdbc4PreparedStatementImpl.<init>(Unknown Source)
    at com.vertica.jdbc.VJDBCObjectFactory.createPreparedStatement(Unknown Source)
    at com.vertica.jdbc.common.SConnection.prepareStatement(Unknown Source)
    at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$$anon$1.<init>(JDBCRDD.scala:400)
    at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:379)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
    at org.apache.spark.scheduler.Task.run(Task.scala:86)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    ... 1 more
Caused by: com.vertica.support.exceptions.SyntaxErrorException: [Vertica][VJDBC](4856) ERROR: Syntax error at or near "Window"
    ... 27 more

What I want to know is, what exactly did spark try to execute against the vertica database? Is there a trace config I can set somewhere?

Thanks!


回答1:


You can look at the query_requests system table to see what SQL has been run against your database. You can filter on user_name and start_timestamp to try and help find the query.

Typically when you control the SQL, you would want to add in a label. But in this case you'll have to search for it.

Also be aware that the retention period of this is governed by the data collector settings.




回答2:


Using the Spark web UI you can check the behavior and performance of your Spark application. It can also show you the SQL's in SQL tab for web UI. You can also explore the Resource Manager log for more details.

Spark web UI at http://<host ip>:4040. 

You can access the SQL tab under /SQL URL, e.g. http://:4040/SQL/.



来源:https://stackoverflow.com/questions/40505116/how-can-see-the-sql-statements-that-spark-sends-to-my-database

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!