indices[201] = [0,8] is out of order. Many sparse ops require sorted indices.Use `tf.sparse.reorder` to create a correctly ordered copy

天大地大妈咪最大 提交于 2021-01-27 05:06:43

问题


Im doing a neural network encoding every variable and when im going to fit the model, an error raises.

indices[201] = [0,8] is out of order. Many sparse ops require sorted indices.
    Use `tf.sparse.reorder` to create a correctly ordered copy.

 [Op:SerializeManySparse]

I dunno how to solve it. I can print some code here and if u want more i can still printing it

def process_atributes(df, train, test):

    continuas = ['Trip_Duration']
    cs = MinMaxScaler()
    trainCont = cs.fit_transform(train[continuas])
    testCont = cs.transform(test[continuas])

    discretas = ['Start_Station_Name', 'End_Station_Name', 'User_Type', 'Genero', 'Hora_inicio']
    ohe = OneHotEncoder()
    ohe.fit(train[discretas])

    trainDisc = ohe.transform(train[discretas])
    testDisc = ohe.transform(test[discretas])

    trainX = sc.sparse.hstack((trainDisc, trainCont))
    testX = sc.sparse.hstack((testDisc, testCont))
    return (trainX, testX)

def prepare_targets(df, train, test):

    labeled_col = ['RangoEdad']

    le = LabelEncoder()
    le.fit(train[labeled_col].values.ravel())
    trainY = le.transform(train[labeled_col])
    testY = le.transform(test[labeled_col])
    return trainY, testY

X_train_enc, X_test_enc = process_atributes(dataFrameDepurado2, train, test)
Y_train_enc, Y_test_enc = prepare_targets(dataSetPrueba, train, test)

model = Sequential()
model.add(Dense(10, input_dim = X_train_enc.shape[1], activation = 'tanh', kernel_initializer = 'he_normal'))
model.add(Dense(4, activation = 'sigmoid'))

model.compile(loss = 'sparse_categorical_crossentropy', optimizer = SGD(lr = 0.01), metrics = ['accuracy'])

model.fit(X_train_enc, Y_train_enc, validation_data = (X_test_enc, Y_test_enc), epochs = 20, batch_size = 64, shuffle = True) 

This is my DataSet

Thank you in advance.


回答1:


Mentioning the solution here (Answer Section) even though it is present in the Comments Section, for the benefit of the Community.

The documentation for SparseTensor states

By convention, indices should be sorted in row-major order (or equivalently 
lexicographic order on the tuples indices[i]). This is not enforced when
SparseTensor objects are constructed, but most ops assume correct ordering. If 
the ordering of sparse tensor st is wrong, a fixed version can be obtained by
calling [tf.sparse.reorder(st)][2].

So, using either tf.sparse.reorder or scipy.sort_indices on the matrices, X_train_enc, X_test_enc, Y_train_enc, Y_test_enc, before the line of code,

model.fit(X_train_enc, Y_train_enc, validation_data = (X_test_enc, 
Y_test_enc), epochs = 20, batch_size = 64, shuffle = True)

will resolve the issue.

For more information, please refer documentation of Sparse Tensor and tf.sparse.reorder.

Hope this helps. Happy Learning!



来源:https://stackoverflow.com/questions/61961042/indices201-0-8-is-out-of-order-many-sparse-ops-require-sorted-indices-use

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!