TypeError: __init__() missing 1 required positional argument: 'units'

半城伤御伤魂 提交于 2021-01-24 11:39:11

问题


I am working in python and tensor flow but I miss 'units' argument and I do not know how to solve it, It looks like your post is mostly code; please add some more details.It looks like your post is mostly code; please add some more details.

here the code

def createModel():
    model = Sequential()
    # first set of CONV => RELU => MAX POOL layers
    model.add(Conv2D(32, (3, 3), padding='same', activation='relu', input_shape=inputShape))
    model.add(Conv2D(32, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25)) 
    model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(output_dim=NUM_CLASSES, activation='softmax'))
    # returns our fully constructed deep learning + Keras image classifier 
    opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)
    # use binary_crossentropy if there are two classes
    model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
    return model

print("Reshaping trainX at..."+ str(datetime.now()))
#print(trainX.sample()) 
print(type(trainX)) # <class 'pandas.core.series.Series'>
print(trainX.shape) # (750,)
from numpy import zeros
Xtrain = np.zeros([trainX.shape[0],HEIGHT, WIDTH, DEPTH])
for i in range(trainX.shape[0]): # 0 to traindf Size -1
    Xtrain[i] = trainX[i]
print(Xtrain.shape) # (750,128,128,3)
print("Reshaped trainX at..."+ str(datetime.now()))

print("Reshaping valX at..."+ str(datetime.now()))
print(type(valX)) # <class 'pandas.core.series.Series'>
print(valX.shape) # (250,)
from numpy import zeros
Xval = np.zeros([valX.shape[0],HEIGHT, WIDTH, DEPTH])
for i in range(valX.shape[0]): # 0 to traindf Size -1
    Xval[i] = valX[i]
print(Xval.shape) # (250,128,128,3)
print("Reshaped valX at..."+ str(datetime.now()))

# initialize the model
print("compiling model...")
sys.stdout.flush()
model = createModel()

# print the summary of model
from keras.utils import print_summary
print_summary(model, line_length=None, positions=None, print_fn=None)

# add some visualization
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
SVG(model_to_dot(model).create(prog='dot', format='svg'))


回答1:


Try changing this line:

model.add(Dense(output_dim=NUM_CLASSES, activation='softmax'))

to

model.add(Dense(NUM_CLASSES, activation='softmax'))

I'm not experience in keras but I could not find a parameter called output_dim on the documentation page for Dense. I think you meant to provide units but labelled it as output_dim




回答2:


The Keras Dense layer documentation is as follows:

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

Using the following :

classifier.add(Dense(6, activation='relu', kernel_initializer='glorot_uniform',input_dim=11))

Will work as here the units means the output_dim saying that we need 6 neurons in the hidden layer. The weights are initialized with the uniform function and the input layer has 11 independent variables of the dataset (input_dim) to feed the above-hidden layer.




回答3:


I think it's a version issue. In updated version of keras for Dense there is no "output_dim" argument.

You can see this documentation link for Dense arguments.

https://keras.io/api/layers/core_layers/dense/

tf.keras.layers.Dense(
    units,
    activation=None,
    use_bias=True,
    kernel_initializer="glorot_uniform",
    bias_initializer="zeros",
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs
)

So the first argument is "units", Which is mandatory.

instead of this line:

model.add(Dense(output_dim=NUM_CLASSES, activation='softmax'))

use this:

model.add(Dense(units=NUM_CLASSES, activation='softmax'))

or

model.add(Dense(NUM_CLASSES, activation='softmax'))


来源:https://stackoverflow.com/questions/56106546/typeerror-init-missing-1-required-positional-argument-units

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!