问题
I want to have ha elegant function to cast all object columns in a pandas data frame to categories
df[x] = df[x].astype("category")
performs the type cast
df.select_dtypes(include=['object'])
would sub-select all categories columns. However this results in a loss of the other columns / a manual merge is required. Is there a solution which "just works in place" or does not require a manual cast?
edit
I am looking for something similar as http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.convert_objects.html for a conversion to categorical data
回答1:
use apply
and pd.Series.astype
with dtype='category'
Consider the pd.DataFrame
df
df = pd.DataFrame(dict(
A=[1, 2, 3, 4],
B=list('abcd'),
C=[2, 3, 4, 5],
D=list('defg')
))
df
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A 4 non-null int64
B 4 non-null object
C 4 non-null int64
D 4 non-null object
dtypes: int64(2), object(2)
memory usage: 200.0+ bytes
Lets use select_dtypes
to include all 'object'
types to convert and recombine with a select_dtypes
to exclude them.
df = pd.concat([
df.select_dtypes([], ['object']),
df.select_dtypes(['object']).apply(pd.Series.astype, dtype='category')
], axis=1).reindex_axis(df.columns, axis=1)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A 4 non-null int64
B 4 non-null category
C 4 non-null int64
D 4 non-null category
dtypes: category(2), int64(2)
memory usage: 208.0 bytes
回答2:
I think that this is a more elegant way:
df = pd.DataFrame(dict(
A=[1, 2, 3, 4],
B=list('abcd'),
C=[2, 3, 4, 5],
D=list('defg')
))
df.info()
df.loc[:, df.dtypes == 'object'] =\
df.select_dtypes(['object'])\
.apply(lambda x: x.astype('category'))
df.info()
回答3:
Wish I could add this as a comment, but can't.
The accepted answer doesn't work for pandas version 0.25 and higher. Use .reindex
instead of reindex_axis
. See here for more information:
https://github.com/scikit-hep/root_pandas/issues/82
回答4:
Often the order of categories has meaning, for example t-short sizes 'S', 'M', 'L' 'XL' are ordered categories (in SPSS - ordinals). If you are interested in creating ordered categories from strings you can use this code:
df = pd.concat([
df.select_dtypes([], ['object']),
df.select_dtypes(['object']).apply(pd.Categorical, ordered=True)
], axis=1).reindex(df.columns, axis=1)
In the resulting DataFrame categorical columns can be sorted by values the same way as you used to sort strings.
来源:https://stackoverflow.com/questions/39904889/pandas-cast-all-object-columns-to-category