Pandas cast all object columns to category

时光总嘲笑我的痴心妄想 提交于 2021-01-22 05:27:13

问题


I want to have ha elegant function to cast all object columns in a pandas data frame to categories

df[x] = df[x].astype("category") performs the type cast df.select_dtypes(include=['object']) would sub-select all categories columns. However this results in a loss of the other columns / a manual merge is required. Is there a solution which "just works in place" or does not require a manual cast?

edit

I am looking for something similar as http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.convert_objects.html for a conversion to categorical data


回答1:


use apply and pd.Series.astype with dtype='category'

Consider the pd.DataFrame df

df = pd.DataFrame(dict(
        A=[1, 2, 3, 4],
        B=list('abcd'),
        C=[2, 3, 4, 5],
        D=list('defg')
    ))
df

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A    4 non-null int64
B    4 non-null object
C    4 non-null int64
D    4 non-null object
dtypes: int64(2), object(2)
memory usage: 200.0+ bytes

Lets use select_dtypes to include all 'object' types to convert and recombine with a select_dtypes to exclude them.

df = pd.concat([
        df.select_dtypes([], ['object']),
        df.select_dtypes(['object']).apply(pd.Series.astype, dtype='category')
        ], axis=1).reindex_axis(df.columns, axis=1)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A    4 non-null int64
B    4 non-null category
C    4 non-null int64
D    4 non-null category
dtypes: category(2), int64(2)
memory usage: 208.0 bytes



回答2:


I think that this is a more elegant way:

df = pd.DataFrame(dict(
        A=[1, 2, 3, 4],
        B=list('abcd'),
        C=[2, 3, 4, 5],
        D=list('defg')
    ))

df.info()

df.loc[:, df.dtypes == 'object'] =\
    df.select_dtypes(['object'])\
    .apply(lambda x: x.astype('category'))

df.info()



回答3:


Wish I could add this as a comment, but can't.

The accepted answer doesn't work for pandas version 0.25 and higher. Use .reindex instead of reindex_axis. See here for more information: https://github.com/scikit-hep/root_pandas/issues/82




回答4:


Often the order of categories has meaning, for example t-short sizes 'S', 'M', 'L' 'XL' are ordered categories (in SPSS - ordinals). If you are interested in creating ordered categories from strings you can use this code:

df = pd.concat([
        df.select_dtypes([], ['object']),
        df.select_dtypes(['object']).apply(pd.Categorical, ordered=True)
        ], axis=1).reindex(df.columns, axis=1)

In the resulting DataFrame categorical columns can be sorted by values the same way as you used to sort strings.



来源:https://stackoverflow.com/questions/39904889/pandas-cast-all-object-columns-to-category

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!