问题
I am trying to implement a face recognition Siamese Network using the Labelled Faces in the Wild (LFW Dataset in Kaggle).
The training data image pairs is stored in the format of :
ndarray[ndarray[image1,image2],ndarray[image1,image2]...] and so on. The images are RGB channelled with size of 224*224.
There are 2200 training pairs with 1100 match image pairs and 1100 mismatch image pairs. Also, there are 1000 test pairs with 500 match image pairs and 500 mismatch image pairs.
I have designed the Siamese network with VGG-16 architecture. The model summary is as follows:
However, when I try to fit the model for the data, I get this error:
The code for the Network is:
from keras.layers import Input,Lambda
from keras import backend as K
from keras.models import Model
from keras.regularizers import l2
IMG_SHAPE=(224,224,3)
BATCH_SIZE=16
EPOCHS=32
def return_siamese_net():
left_input=Input(IMG_SHAPE)
right_input=Input(IMG_SHAPE)
model=Sequential(name="VGG-16")
#First Layer
model.add(Conv2D(filters=64,kernel_size=(3,3),activation='relu',padding='same',input_shape=IMG_SHAPE,kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=64,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
#Second Layer
model.add(Conv2D(filters=128,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=128,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
#Third Layer
model.add(Conv2D(filters=256,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=256,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=256,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
#Fourth Layer
model.add(Conv2D(filters=512,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=512,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=512,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
#Fifth Layer
model.add(Conv2D(filters=512,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=512,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(Conv2D(filters=512,kernel_size=(3,3),activation='relu',padding='same',kernel_initializer='glorot_uniform',kernel_regularizer=l2(1e-4)))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
#Sixth Layer
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
encoded_l=model(left_input)
encoded_r=model(right_input)
lambda_layer= Lambda(lambda tensors:K.abs(tensors[0]-tensors[1]))
L1_distance = lambda_layer([encoded_l, encoded_r])
prediction = Dense(1,activation='sigmoid')(L1_distance)
siamese_net = Model(inputs=[left_input,right_input],outputs=prediction)
return siamese_net
from keras.optimizers import SGD,RMSprop,Adam
optimizer=Adam(lr=0.01)
model.compile(loss='binary_crossentropy',metrics=['accuracy'],optimizer=optimizer)
In the below snippet, train_nparr_pairs has 2200 match and mismatch images and test_nparr_pairs has 1000 match and mismatch images. train_labels and test_labels have 0 and 1 based on positive pair and negative pair .
history = model.fit([train_nparr_pairs[:, 0], train_nparr_pairs[:, 1]], train_labels,validation_data=([test_nparr_pairs[:, 0], test_nparr_pairs[:, 1]], test_labels),batch_size=BATCH_SIZE, epochs=EPOCHS)
Is there anything that I am missing here?
来源:https://stackoverflow.com/questions/65536939/how-to-fit-input-and-output-data-into-siamese-network-using-keras