问题
I am trying to experiment with sentiment analysis case and I am trying to run a random classifier for the following:
|Topic |value|label|
|Apples are great |-0.99|0 |
|Balloon is red |-0.98|1 |
|cars are running |-0.93|0 |
|dear diary |0.8 |1 |
|elephant is huge |0.91 |1 |
|facebook is great |0.97 |0 |
after splitting it into train test from sklearn library,
I am doing the following for the Topic column for the count vectoriser to work upon it:
x = train.iloc[:,0:2]
#except for alphabets removing all punctuations
x.replace("[^a-zA-Z]"," ",regex=True, inplace=True)
#convert to lower case
x = x.apply(lambda a: a.astype(str).str.lower())
x.head(2)
After that I apply countvectorizer to the topics column, convert it together with value column and apply Random classifier.
## Import library to check accuracy
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
## implement BAG OF WORDS
countvector=CountVectorizer(ngram_range=(2,2))
traindataset=countvector.fit_transform(x['Topics'])
train_set = pd.concat([x['compound'], pd.DataFrame(traindataset)], axis=1)
# implement RandomForest Classifier
randomclassifier=RandomForestClassifier(n_estimators=200,criterion='entropy')
randomclassifier.fit(train_set,train['label'])
But I receive an error:
TypeError Traceback (most recent call last)
TypeError: float() argument must be a string or a number, not 'csr_matrix'
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
<ipython-input-41-7a1f9b292921> in <module>()
1 # implement RandomForest Classifier
2 randomclassifier=RandomForestClassifier(n_estimators=200,criterion='entropy')
----> 3 randomclassifier.fit(train_set,train['label'])
4 frames
/usr/local/lib/python3.6/dist-packages/numpy/core/_asarray.py in asarray(a, dtype, order)
83
84 """
---> 85 return array(a, dtype, copy=False, order=order)
86
87
ValueError: setting an array element with a sequence.
My idea is:
The values I received are from applying vader-sentiment and I want to apply that too - to my random classifier to see the impact of vader scores on the output.
Maybe is there a way to multiply the data in the value column with sparse matrix traindata generated
Can anyone please tell me how to do that in this case.
回答1:
The issue is concatenating another column to sparse matrix (the output from countvector.fit_transform
). For simplicity sake, let's say your training is:
x = pd.DataFrame({'Topics':['Apples are great','Balloon is red','cars are running',
'dear diary','elephant is huge','facebook is great'],
'value':[-0.99,-0.98,-0.93,0.8,0.91,0.97,],
'label':[0,1,0,1,1,0]})
You can see this gives you something weird:
countvector=CountVectorizer(ngram_range=(2,2))
traindataset=countvector.fit_transform(x['Topics'])
train_set = pd.concat([x['value'], pd.DataFrame(traindataset)], axis=1)
train_set.head(2)
value 0
0 -0.99 (0, 0)\t1\n (0, 1)\t1
1 -0.98 (0, 3)\t1\n (0, 10)\t1
It is possible to convert your sparse to a dense numpy array and then your pandas dataframe will work, however if your dataset is huge this is extremely costly. To keep it as sparse, you can do:
from scipy import sparse
train_set = scipy.sparse.hstack([sparse.csr_matrix(x['value']).reshape(-1,1),traindataset])
randomclassifier=RandomForestClassifier(n_estimators=200,criterion='entropy')
randomclassifier.fit(train_set,x['label'])
Check out also the help page for sparse
来源:https://stackoverflow.com/questions/65127568/how-to-run-a-random-classifer-in-the-following-case