Topic
- Array
- Two Pointers
Description
https://leetcode.com/problems/3sum/
Given an array nums
of n integers, are there elements a, b, c in nums
such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Example 2:
Input: nums = []
Output: []
Example 3:
Input: nums = [0]
Output: []
Constraints:
- 0 <= nums.length <= 3000
- -10⁵ <= nums[i] <= 10⁵
Analysis
方法一:
- 首先将数组从左到右升序排序。
- 接下来动用三个指针,用一指针a先固定一元素,然后指针b初始位置为a的右一位,指针c初始位置数组尾元素,
- b、c两指针向中间夹逼寻找出这两指针所指元素之和等于a指针所指元素 * -1,期间忽略重复元素,寻找到则将结果添加至List。
- 当b、c两指针相遇,指针a向右移动一位,跳到步骤2.,直到指针a移动到数组倒数第二位。
方法二:与方法一类似,用到Set去重。
方法三:在方法一的基础上,进一步完善:
- 方法体内第一句后添加防御性代码
if (nums.length < 3) return res;
。 - for循环中第一语句前插入一句
if (nums[i] > 0) break;
。这是因为数组已经是从左到右升序的,如果第一个数大于0,就不可能在接下来的元素中寻找出两元素之和小于0的。 - 将
if (i == 0 || (i > 0 && num[i] != num[i-1]))
中的i > 0
是不必要的,将其移除。
Submission
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
public class ThreeSum {
// 方法一:
public List<List<Integer>> threeSum1(int[] num) {
Arrays.sort(num);
List<List<Integer>> res = new LinkedList<>();
for (int i = 0; i < num.length - 2; i++) {
if (i == 0 || (i > 0 && num[i] != num[i - 1])) {
int lo = i + 1, hi = num.length - 1, sum = 0 - num[i];
while (lo < hi) {
if (num[lo] + num[hi] == sum) {
res.add(Arrays.asList(num[i], num[lo], num[hi]));
while (lo < hi && num[lo] == num[lo + 1])
lo++;
while (lo < hi && num[hi] == num[hi - 1])
hi--;
lo++;
hi--;
} else if (num[lo] + num[hi] < sum)
lo++;
else
hi--;
}
}
}
return res;
}
// 方法二:与方法一类似,用到Set去重
public List<List<Integer>> threeSum2(int[] nums) {
Set<List<Integer>> res = new HashSet<>();
if (nums.length == 0)
return new ArrayList<>(res);
Arrays.sort(nums);
for (int i = 0; i < nums.length - 2; i++) {
int j = i + 1;
int k = nums.length - 1;
while (j < k) {
int sum = nums[i] + nums[j] + nums[k];
if (sum == 0)
res.add(Arrays.asList(nums[i], nums[j++], nums[k--]));
else if (sum > 0)
k--;
else if (sum < 0)
j++;
}
}
return new ArrayList<>(res);
}
//方法三:在方法一的基础上做进一步改善
public List<List<Integer>> threeSum3(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums.length < 3)
return res;
Arrays.sort(nums);
for (int i = 0; i < nums.length - 2; i++) {
if (nums[i] > 0)
break;
if (i == 0 || nums[i] != nums[i - 1]) {
int lo = i + 1, hi = nums.length - 1, sum = 0 - nums[i];
while (lo < hi) {
if (nums[lo] + nums[hi] == sum) {
res.add(Arrays.asList(nums[i], nums[lo], nums[hi]));
while (lo < hi && nums[lo] == nums[lo + 1])
lo++;
while (lo < hi && nums[hi] == nums[hi - 1])
hi--;
lo++;
hi--;
} else if (nums[lo] + nums[hi] < sum)
lo++;
else
hi--;
}
}
}
return res;
}
}
Test
import static org.junit.Assert.*;
import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.collection.IsIterableContainingInAnyOrder.containsInAnyOrder;
import java.util.Arrays;
import org.hamcrest.collection.IsEmptyCollection;
import org.junit.Test;
public class ThreeSumTest {
@Test
@SuppressWarnings("unchecked")
public void test() {
ThreeSum obj = new ThreeSum();
assertThat(obj.threeSum1(new int[] { -1, 0, 1, 2, -1, -4 }),
containsInAnyOrder(Arrays.asList(-1, -1, 2), Arrays.asList(-1, 0, 1)));
assertThat(obj.threeSum1(new int[] {}), IsEmptyCollection.empty());
assertThat(obj.threeSum1(new int[] { 0 }), IsEmptyCollection.empty());
assertThat(obj.threeSum2(new int[] { -1, 0, 1, 2, -1, -4 }),
containsInAnyOrder(Arrays.asList(-1, -1, 2), Arrays.asList(-1, 0, 1)));
assertThat(obj.threeSum2(new int[] {}), IsEmptyCollection.empty());
assertThat(obj.threeSum2(new int[] { 0 }), IsEmptyCollection.empty());
assertThat(obj.threeSum3(new int[] { -1, 0, 1, 2, -1, -4 }),
containsInAnyOrder(Arrays.asList(-1, -1, 2), Arrays.asList(-1, 0, 1)));
assertThat(obj.threeSum3(new int[] {}), IsEmptyCollection.empty());
assertThat(obj.threeSum3(new int[] { 0 }), IsEmptyCollection.empty());
}
}
来源:oschina
链接:https://my.oschina.net/jallenkwong/blog/4872541