问题
I'm working on a project in which need to get the variance of an image. Currently I'm taking 2 approaches (both work but are very slow):
- Calculating the variance for each pixel individually:
This is the code using numpy, varianceMatrix is the output
varianceMatrix = np.zeros(im.shape,np.uint8)
w = 1 # the radius of pixels neighbors
ny = len(im)
nx = len(im[0])
for i in range(w,nx-w):
for j in range(w,ny-w):
sampleframe = im[j-w:j+w, i-w:i+w]
variance = np.var(sampleframe)
varianceMatrix[j][i] = int(variance)
return varianceMatrix
- Using an existing scipy function:
This is the scipy function:
from scipy import ndimage
varianceMatrix = ndimage.generic_filter(im, np.var, size = 3)
The scipy function is faster, but not so much. I'm looking for a better alternative to calculate the variance.
Any ideas???
回答1:
Here a fast solution using OpenCV:
import cv2
def winVar(img, wlen):
wmean, wsqrmean = (cv2.boxFilter(x, -1, (wlen, wlen),
borderType=cv2.BORDER_REFLECT) for x in (img, img*img))
return wsqrmean - wmean*wmean
On my machine and for the following example, winVar()
is 2915 times faster than ndimage.generic_filter()
and 10.8 times faster than sliding_img_var()
(see pv.'s answer):
In [66]: img = np.random.randint(0, 256, (500,500)).astype(np.float)
In [67]: %timeit winVar(img, 3)
100 loops, best of 3: 1.76 ms per loop
In [68]: %timeit ndimage.generic_filter(img, np.var, size=3)
1 loops, best of 3: 5.13 s per loop
In [69]: %timeit sliding_img_var(img, 1)
100 loops, best of 3: 19 ms per loop
Result matches that of ndimage.generic_filter()
:
In [70]: np.allclose(winVar(img, 3), ndimage.generic_filter(img, np.var, size=3))
Out[70]: True
回答2:
You can use a well-known sliding window stride trick to speed up the computation. It add two "virtual dimensions" to the end of the array without copying the data, and then computes the variance over them.
Note that in your code, im[j-w:j+w, ..]
goes over indices j-w,j-w+1,...,j+w-1
, the last one is exclusive, which you might not have meant. Also, the variances are larger than the uint8 range, so you end up with integer wraparound.
import numpy as np
import time
np.random.seed(1234)
img = (np.random.rand(200, 200)*256).astype(np.uint8)
def sliding_window(a, window, axis=-1):
shape = list(a.shape) + [window]
shape[axis] -= window - 1
if shape[axis] < 0:
raise ValueError("Array too small")
strides = a.strides + (a.strides[axis],)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
def sliding_img_var(img, window):
if window <= 0:
raise ValueError("invalid window size")
buf = sliding_window(img, 2*window, 0)
buf = sliding_window(buf, 2*window, 1)
out = np.zeros(img.shape, dtype=np.float32)
np.var(buf[:-1,:-1], axis=(-1,-2), out=out[window:-window,window:-window])
return out
def looping_img_var(im, w):
nx, ny = img.shape
varianceMatrix = np.zeros(im.shape, np.float32)
for i in range(w,nx-w):
for j in range(w,ny-w):
sampleframe = im[j-w:j+w, i-w:i+w]
variance = np.var(sampleframe)
varianceMatrix[j][i] = variance
return varianceMatrix
np.set_printoptions(linewidth=1000, edgeitems=5)
start = time.time()
print(sliding_img_var(img, 1))
time_sliding = time.time() - start
start = time.time()
print(looping_img_var(img, 1))
time_looping = time.time() - start
print("duration: sliding: {0} s, looping: {1} s".format(time_sliding, time_looping))
回答3:
If the method using ndimage.generic_filter
is not fast enough, you can write your own optimized implementation for the variance calculation in Cython.
来源:https://stackoverflow.com/questions/28931265/calculating-variance-of-an-image-python-efficiently