In Keras “ImageDataGenerator”, is “validation_split” parameter a kind of K-fold cross validation?

隐身守侯 提交于 2020-12-30 03:59:06

问题


I am trying to do K-fold cross validation on Keras model (with ImageDataGenerator and flow_from_directory for training and validation data), I want to know if the argument "validation_split" in "ImageDataGenerator"

    test_datagen = ImageDataGenerator(
    rescale=1. / 255,
    rotation_range = 180,
    width_shift_range = 0.2,
    height_shift_range = 0.2,
    brightness_range = (0.8, 1.2),
    shear_range = 0.2,
    zoom_range = 0.2,
    horizontal_flip = True,
    vertical_flip = True,
    validation_split = 0.1

)

train_datagen = ImageDataGenerator(
    rotation_range = 180,
    width_shift_range = 0.2,
    height_shift_range = 0.2,
    brightness_range = (0.8, 1.2),
    rescale = 1. / 255,
    shear_range = 0.2,
    zoom_range = 0.2,
    horizontal_flip = True,
    vertical_flip = True,
    validation_split = 0.1
)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size = (img_width, img_height),
    batch_size = batch_size,
    class_mode ='binary',
    seed = 42
)

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size = (img_width, img_height),
    batch_size = batch_size,
    class_mode = 'binary',
    seed = 42
)

history = model.fit_generator(
    train_generator,
    steps_per_epoch = nb_train_samples // batch_size,
    epochs = epochs,
    validation_data = validation_generator,
    validation_steps = nb_validation_samples // batch_size)

Is the "validation_split = 0.1" means that I've already done 10-fold cross validation on my dataset?


回答1:


No. It only does the validation once. From the official document:

validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the x and y data provided, before shuffling.

Thus setting it as validation_split=0.1 simply keeps last 10% of your data from training, and use it as a validation set.

If you want to do the k-cross validation, you must do so manually. Here's a good starting point: Evaluate the Performance of Deep Learning Models in Keras



来源:https://stackoverflow.com/questions/55963087/in-keras-imagedatagenerator-is-validation-split-parameter-a-kind-of-k-fold

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!