计算机视觉、计算机图形学、图像处理的区别和联系

妖精的绣舞 提交于 2020-12-29 12:48:59

计算机视觉、计算机图形学、图像处理的区别和联系

搞了CV一段时间,仍时不时因为概念问题而困惑,搞不清楚计算机视觉(Computer Vision),计算机图形学(Computer Graphics)和图像处理(Image Processing)的区别和联系。在知乎上看到了一个帖子,觉得解释的很好,结合自己的理解,形成此文存档。

1.基本概念

从定义理解概念是最严谨的。所以首先搞清楚维基百科中这些概念的定义。

计算机视觉(CV):

Computer vision is a field that includes methods for acquiring, processing, analyzing, and understanding images and, in general, high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions.[1]

直译过来就是

计算机视觉是一个学科/领域,它包括获取、处理、分析和理解图像或者更一般意义的真实世界的高维数据的方法;它的目的是产生决策形式的数字或者符号信息。

计算机图像学(CG):

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.[2]

直译过来就是

计算机图形学是计算机科学的一个子领域,它包括数字合成和操作可视内容(图像、视频)的方法。尽管这个术语通常指三维计算机图形学的研究,但它也包括二维图形学和图像处理。

图像处理(IP):

In imaging science, image processing is processing of images using mathematical operations by using any form of signal processing for which the input is an image, such as a photograph or video frame; the output of image processing may be either an image or a set of characteristics or parameters related to the image.[3]

直译过来就是

在图像科学中,图像处理是用任何信号处理等数学操作处理图像的过程,输入时图像(摄影图像或者视频帧),输出是图像或者与输入图像有关的特征、参数的集合。

2.区别和联系[4]

2.1 精简的概括

Computer Graphics和Computer Vision是同一过程的两个方向。Computer Graphics将抽象的语义信息转化成图像,Computer Vision从图像中提取抽象的语义信息。Image Processing探索的是从一个图像或者一组图像之间的互相转化和关系,与语义信息无关。

2.2 从输入输出角度看

(1)区别

Computer Graphics,简称 CG 。输入的是对虚拟场景的描述,通常为多边形数组,而每个多边形由三个顶点组成,每个顶点包括三维坐标、贴图坐标、rgb 颜色等。输出的是图像,即二维像素数组。

Computer Vision,简称 CV。输入的是图像或图像序列,通常来自相机、摄像头或视频文件。输出的是对于图像序列对应的真实世界的理解,比如检测人脸、识别车牌。

Digital Image Processing,简称 DIP。输入的是图像,输出的也是图像。Photoshop 中对一副图像应用滤镜就是典型的一种图像处理。常见操作有模糊、灰度化、增强对比度等。

(2)联系

CG 中也会用到 DIP,现今的三维游戏为了增加表现力都会叠加全屏的后期特效,原理就是 DIP,只是将计算量放在了显卡端。

CV 更是大量依赖 DIP 来打杂活,比如对需要识别的照片进行预处理。

最后还要提到近年来的热点——增强现实(AR),它既需要 CG,又需要 CV,当然也不会漏掉 DIP。它用 DIP 进行预处理,用 CV 进行跟踪物体的识别与姿态获取,用 CG 进行虚拟三维物体的叠加。

(3)图解

这里还有一张图,简明地表达了CV、CG、DIP和AI的区别和联系。 
区别和联系

2.3 从问题本身看

(1)区别

从问题本身来说,这三者主要以两类问题区分:是根据状态模拟观测环境,还是根据观测的环境来推测状态。假设观测是Z,状态是X:Computer Graphics是一个Forwad Problem (Z|X): 给你光源的位置,物体形状,物体表面信息,你如何根据已有的变量的状态模拟出一个环境出来。

Computer Vision正好相反,是一个Inverse Problem (X|Z):你所有能得到的都是观测信息(measurements), 根据得到的每一个Pixel的信息(颜色,深度),我要来估计物体环境的特征和状态出来,比如物体运动(Tracking),三维结构(SFM),物体类别(Classification and Segmentation)等等。

对于Image Processing来说,它恰好介于两者之间,两种问题都有。但对于State-of-art的研究来说,Image Processing更偏于Computer Vision, 或者看上去更像Computer Vision的子类。尽管这三类研究中,随着CV领域的不断进步,以及越来越高级相机传感器出现(Depth Camera, Event Camera),很多算法都被互相用到,但是从Motivation来看,并没有太大变化。

(2)联系

得益于这几个领域的共同进步,所以你能看到Graphics和Computer Vision现在出现越来越多的交集。如果根据观测量(图片),Computer Vision可以越来越准确的估计出越来越多的变量,那么这些变量套到Graphics算法中,就可以模拟出一个跟真实环境一样的场景出来。

与此同时,Graphics需要构建更真实的场景,也希望能够将变量更加接机与实际,或者通过算法估计出来,这就引入了Vision的动机。这也是近年来三维重建算法,同时大量发表在Graphics和Vision的会议的原因。随着CV从2D向3D发展,以后两者的交集会越来越大,除了learning以外的其他很多问题融合并到一个领域我也不会奇怪。

参考文献

[1] https://en.wikipedia.org/wiki/Computer_vision 
[2]https://en.wikipedia.org/wiki/Computer_graphics_(computer_science) 
[3] https://en.wikipedia.org/wiki/Image_processing 
[4] 张静, 知乎, 
http://www.zhihu.com/question/20672053/answer/15854031

 

 

 

计算机视觉、图形学和图像处理,三者有什么联系?

先说区别

1. Computer Graphics,简称 CG 。输入的是对虚拟场景的描述,通常为多边形数组,而每个多边形由三个顶点组成,每个顶点包括三维坐标、贴图坐标、rgb 颜色等。输出的是图像,即二维像素数组。

 

[xyz xyz xyz ... xyz] -> 图片

2. Computer Vision,简称 CV。输入的是图像或图像序列,通常来自相机、摄像头或视频文件。输出的是对于图像序列对应的真实世界的理解,比如检测人脸、识别车牌、区分猫狗。

 

图片 -> dog or cat?

图片 -> [xyz xyz xyz ... xyz]

3. Digital Image Processing,简称 DIP。输入的是图像,输出的也是图像。Photoshop 中对一副图像应用滤镜就是典型的一种图像处理。常见操作有模糊、灰度化、增强对比度等。

 

图片 -> ps后的图片

再说联系

1. CG 中也会用到 DIP,现今的三维游戏为了增加表现力都会叠加全屏的后期特效,原理就是 DIP,只是将计算量放在了显卡端。通常的做法是绘制一个全屏的矩形,在 Pixel Shader 中进行图像处理。

 

2. CV 大量依赖 DIP 来打杂活,比如对需要识别的照片进行预处理,增强对比度、去除噪点。

 

3. 最后还要提到今年的热点——增强现实(AR),它既需要 CG,又需要 CV,当然也不会漏掉 DIP。它用 DIP 进行预处理,用 CV 进行跟踪物体的识别与姿态获取,用 CG 进行虚拟三维物体的叠加。

 

转载请保留作者名、注明源自微信公众号“黑客与画家”(HackerAndPainter),关注游戏开发、计算机视觉、图形学、虚拟现实、体感交互等好玩的内容。

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!