问题
I am new to Python and stuck with building a hierarchy out of a relational dataset.
It would be of immense help if someone has an idea on how to proceed with this.
I have a relational data-set with data like
_currentnode, childnode_
root, child1
child1, leaf2
child1, child3
child1, leaf4
child3, leaf5
child3, leaf6
so-on. I am looking for some python or pyspark code to
build a hierarchy dataframe like below
_level1, level2, level3, level4_
root, child1, leaf2, null
root, child1, child3, leaf5
root, child1, child3, leaf6
root, child1, leaf4, null
The data is alpha-numerics and is a huge dataset[~50mil records].
Also, the root of the hierarchy is known and can be hardwired in the code.
So in the example, above, the root of the hierarchy is 'root'.
回答1:
Shortest Path with Pyspark
The input data can be interpreted as a graph with the connections between currentnode
and childnode
. Then the question is what is the shortest path between the root node and all leaf nodes and is called single source shortest path.
Spark has Graphx to handle parallel computations of graphs. Unfortunately, GraphX does not provide a Python API (more details can be found here). A graph library with Python support is GraphFrames. GraphFrames uses parts of GraphX.
Both GraphX and GraphFrames provide an solution for sssp. Unfortunately again, both implementations return only the length of the shortest paths, not the paths themselves (GraphX and GraphFrames). But this answer provides an implementation of the algorithm for GraphX and Scala that also returns the paths. All three solutions use Pregel.
Translating the aforementioned answer to GraphFrames/Python:
1. Data preparation
Provide unique IDs for all nodes and change the column names so that they fit to the names described here
df = ...
vertices = df.select("currentnode").withColumnRenamed("currentnode", "node").union(df.select("childnode")).distinct().withColumn("id", F.monotonically_increasing_id()).cache()
edges = df.join(vertices, df.currentnode == vertices.node).drop(F.col("node")).withColumnRenamed("id", "src")\
.join(vertices, df.childnode== vertices.node).drop(F.col("node")).withColumnRenamed("id", "dst").cache()
Nodes Edges
+------+------------+ +-----------+---------+------------+------------+
| node| id| |currentnode|childnode| src| dst|
+------+------------+ +-----------+---------+------------+------------+
| leaf2| 17179869184| | child1| leaf4| 25769803776|249108103168|
|child1| 25769803776| | child1| child3| 25769803776| 68719476736|
|child3| 68719476736| | child1| leaf2| 25769803776| 17179869184|
| leaf6|103079215104| | child3| leaf6| 68719476736|103079215104|
| root|171798691840| | child3| leaf5| 68719476736|214748364800|
| leaf5|214748364800| | root| child1|171798691840| 25769803776|
| leaf4|249108103168| +-----------+---------+------------+------------+
+------+------------+
2. Create the GraphFrame
from graphframes import GraphFrame
graph = GraphFrame(vertices, edges)
3. Create UDFs that will form the single parts of the Pregel algorithm
The message type:from pyspark.sql.types import *
vertColSchema = StructType()\
.add("dist", DoubleType())\
.add("node", StringType())\
.add("path", ArrayType(StringType(), True))
The vertex program:
def vertexProgram(vd, msg):
if msg == None or vd.__getitem__(0) < msg.__getitem__(0):
return (vd.__getitem__(0), vd.__getitem__(1), vd.__getitem__(2))
else:
return (msg.__getitem__(0), vd.__getitem__(1), msg.__getitem__(2))
vertexProgramUdf = F.udf(vertexProgram, vertColSchema)
The outgoing messages:
def sendMsgToDst(src, dst):
srcDist = src.__getitem__(0)
dstDist = dst.__getitem__(0)
if srcDist < (dstDist - 1):
return (srcDist + 1, src.__getitem__(1), src.__getitem__(2) + [dst.__getitem__(1)])
else:
return None
sendMsgToDstUdf = F.udf(sendMsgToDst, vertColSchema)
Message aggregation:
def aggMsgs(agg):
shortest_dist = sorted(agg, key=lambda tup: tup[1])[0]
return (shortest_dist.__getitem__(0), shortest_dist.__getitem__(1), shortest_dist.__getitem__(2))
aggMsgsUdf = F.udf(aggMsgs, vertColSchema)
4. Combine the parts
from graphframes.lib import Pregel
result = graph.pregel.withVertexColumn(colName = "vertCol", \
initialExpr = F.when(F.col("node")==(F.lit("root")), F.struct(F.lit(0.0), F.col("node"), F.array(F.col("node")))) \
.otherwise(F.struct(F.lit(float("inf")), F.col("node"), F.array(F.lit("")))).cast(vertColSchema), \
updateAfterAggMsgsExpr = vertexProgramUdf(F.col("vertCol"), Pregel.msg())) \
.sendMsgToDst(sendMsgToDstUdf(F.col("src.vertCol"), Pregel.dst("vertCol"))) \
.aggMsgs(aggMsgsUdf(F.collect_list(Pregel.msg()))) \
.setMaxIter(10) \
.setCheckpointInterval(2) \
.run()
result.select("vertCol.path").show(truncate=False)
Remarks:
maxIter
should be set to a value at least as large as the longest path. If the value is higher, the result will stay unchanged, but the computation time becomes longer. If the value is too small, the longer paths will be missing in the result. The current version of GraphFrames (0.8.0) does not support stopping the loop when no more new messages are sent.checkpointInterval
should be set to a value smaller thanmaxIter
. The actual value depends on the data and the available hardware. When OutOfMemory exception occur or the Spark session hangs for some time, the value could be reduced.
The final result is a regular dataframe with the content
+-----------------------------+
|path |
+-----------------------------+
|[root, child1] |
|[root, child1, leaf4] |
|[root, child1, child3] |
|[root] |
|[root, child1, child3, leaf6]|
|[root, child1, child3, leaf5]|
|[root, child1, leaf2] |
+-----------------------------+
If necessary the non-leaf nodes could be filtered out here.
来源:https://stackoverflow.com/questions/62450917/build-a-hierarchy-from-a-relational-data-set-using-pyspark