问题
Story
Case 1
I accidentally wrote my Assembly code in the .data
section. I compiled it and executed it. The program ran normally under Linux 5.4.0-53-generic
even though I didn't specify a flag like execstack
.
Case 2:
After that, I executed the program under Linux 5.9.0-050900rc5-generic
. The program got SIGSEGV
. I inspected the virtual memory permission by reading /proc/$pid/maps
. It turned out that the section is not executable.
I think there is a configuration on Linux that manages that permission. But I don't know where to find.
Code
[Linux 5.4.0-53-generic]
Run (normal)
ammarfaizi2@integral:/tmp$ uname -r
5.4.0-53-generic
ammarfaizi2@integral:/tmp$ cat test.asm
[section .data]
global _start
_start:
mov eax, 60
xor edi, edi
syscall
ammarfaizi2@integral:/tmp$ nasm --version
NASM version 2.14.02
ammarfaizi2@integral:/tmp$ nasm -felf64 test.asm -o test.o
ammarfaizi2@integral:/tmp$ ld test.o -o test
ammarfaizi2@integral:/tmp$ ./test
ammarfaizi2@integral:/tmp$ echo $?
0
ammarfaizi2@integral:/tmp$ md5sum test
7ffff5fd44e6ff0a278e881732fba525 test
ammarfaizi2@integral:/tmp$
Check Permission (00400000-00402000 rwxp), so it is executable.
## Debug
gef➤ shell cat /proc/`pgrep test`/maps
00400000-00402000 rwxp 00000000 08:03 7471589 /tmp/test
7ffff7ffb000-7ffff7ffe000 r--p 00000000 00:00 0 [vvar]
7ffff7ffe000-7ffff7fff000 r-xp 00000000 00:00 0 [vdso]
7ffffffde000-7ffffffff000 rwxp 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 [vsyscall]
gef➤
[Linux 5.9.0-050900rc5-generic]
Run (Segfault)
root@esteh:/tmp# uname -r
5.9.0-050900rc5-generic
root@esteh:/tmp# cat test.asm
[section .data]
global _start
_start:
mov eax, 60
xor edi, edi
syscall
root@esteh:/tmp# nasm --version
NASM version 2.14.02
root@esteh:/tmp# nasm -felf64 test.asm -o test.o
root@esteh:/tmp# ld test.o -o test
root@esteh:/tmp# ./test
Segmentation fault (core dumped)
root@esteh:/tmp# echo $?
139
root@esteh:/tmp# md5sum test
7ffff5fd44e6ff0a278e881732fba525 test
root@esteh:/tmp#
Check Permission (00400000-00402000 rw-p), so it is NOT executable.
## Debug
gef➤ shell cat /proc/`pgrep test`/maps
00400000-00402000 rw-p 00000000 fc:01 2412 /tmp/test
7ffff7ff9000-7ffff7ffd000 r--p 00000000 00:00 0 [vvar]
7ffff7ffd000-7ffff7fff000 r-xp 00000000 00:00 0 [vdso]
7ffffffde000-7ffffffff000 rw-p 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 [vsyscall]
gef➤
objdump -p
root@esteh:/tmp# objdump -p test
test: file format elf64-x86-64
Program Header:
LOAD off 0x0000000000000000 vaddr 0x0000000000400000 paddr 0x0000000000400000 align 2**12
filesz 0x0000000000001009 memsz 0x0000000000001009 flags rw-
Questions
- Where is the configuration on Linux that manages default ELF sections permission?
- Are my observations on permissions correct?
Summary
- Default permission for
.data
section on Linux5.4.0-53-generic
is executable. - Default permission for
.data
section on Linux5.9.0-050900rc5-generic
is NOT executable.
回答1:
This is only a guess: I think the culprit is the READ_IMPLIES_EXEC
personality that was being set automatically in the absence of a PT_GNU_STACK
segment.
In the 5.4 kernel source we can find this piece of code:
SET_PERSONALITY2(loc->elf_ex, &arch_state);
if (elf_read_implies_exec(loc->elf_ex, executable_stack))
current->personality |= READ_IMPLIES_EXEC;
That's the only thing that can transform an RW section into an RWX one. Any other use of PROC_EXEC
didn't seem to be changed or relevant to this question, to me.
The executable_stack
is set here:
for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
switch (elf_ppnt->p_type) {
case PT_GNU_STACK:
if (elf_ppnt->p_flags & PF_X)
executable_stack = EXSTACK_ENABLE_X;
else
executable_stack = EXSTACK_DISABLE_X;
break;
But if the PT_GNU_STACK
segment is not present, that variable retains its default value:
int executable_stack = EXSTACK_DEFAULT;
Now this workflow is identical in both 5.4 and the latest kernel source, what changed is the definition of elf_read_implies_exec
:
Linux 5.4:
/*
* An executable for which elf_read_implies_exec() returns TRUE will
* have the READ_IMPLIES_EXEC personality flag set automatically.
*/
#define elf_read_implies_exec(ex, executable_stack) \
(executable_stack != EXSTACK_DISABLE_X)
Latest Linux:
/*
* An executable for which elf_read_implies_exec() returns TRUE will
* have the READ_IMPLIES_EXEC personality flag set automatically.
*
* The decision process for determining the results are:
*
* CPU: | lacks NX* | has NX, ia32 | has NX, x86_64 |
* ELF: | | | |
* ---------------------|------------|------------------|----------------|
* missing PT_GNU_STACK | exec-all | exec-all | exec-none |
* PT_GNU_STACK == RWX | exec-stack | exec-stack | exec-stack |
* PT_GNU_STACK == RW | exec-none | exec-none | exec-none |
*
* exec-all : all PROT_READ user mappings are executable, except when
* backed by files on a noexec-filesystem.
* exec-none : only PROT_EXEC user mappings are executable.
* exec-stack: only the stack and PROT_EXEC user mappings are executable.
*
* *this column has no architectural effect: NX markings are ignored by
* hardware, but may have behavioral effects when "wants X" collides with
* "cannot be X" constraints in memory permission flags, as in
* https://lkml.kernel.org/r/20190418055759.GA3155@mellanox.com
*
*/
#define elf_read_implies_exec(ex, executable_stack) \
(mmap_is_ia32() && executable_stack == EXSTACK_DEFAULT)
Note how in the 5.4 version the elf_read_implies_exec
returned a true value if the stack was not explicitly marked as not executable (via the PT_GNU_STACK
segment).
In the latest source, the check is now more defensive: the elf_read_implies_exec
is true only on 32-bit executable, in the case where no PT_GNU_STACK
segment was found in the ELF binary.
I assembled your program, linked it, and found no PT_GNU_STACK
segment, so this may be the reason.
If this is indeed the issue and if I followed the code correctly, if you set the stack as not executable in the binary, its data section should not be mapped executable anymore (not even on Linux 5.4).
回答2:
Your binary is missing PT_GNU_STACK
. As such, this change appears to have been caused by commit 9fccc5c0c99f238aa1b0460fccbdb30a887e7036:
From 9fccc5c0c99f238aa1b0460fccbdb30a887e7036 Mon Sep 17 00:00:00 2001
From: Kees Cook <keescook@chromium.org>
Date: Thu, 26 Mar 2020 23:48:17 -0700
Subject: x86/elf: Disable automatic READ_IMPLIES_EXEC on 64-bit
With modern x86 64-bit environments, there should never be a need for
automatic READ_IMPLIES_EXEC, as the architecture is intended to always
be execute-bit aware (as in, the default memory protection should be NX
unless a region explicitly requests to be executable).
There were very old x86_64 systems that lacked the NX bit, but for those,
the NX bit is, obviously, unenforceable, so these changes should have
no impact on them.
Suggested-by: Hector Marco-Gisbert <hecmargi@upv.es>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Link: https://lkml.kernel.org/r/20200327064820.12602-4-keescook@chromium.org
---
arch/x86/include/asm/elf.h | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/arch/x86/include/asm/elf.h b/arch/x86/include/asm/elf.h
index 397a1c74433ec..452beed7892bb 100644
--- a/arch/x86/include/asm/elf.h
+++ b/arch/x86/include/asm/elf.h
@@ -287,7 +287,7 @@ extern u32 elf_hwcap2;
* CPU: | lacks NX* | has NX, ia32 | has NX, x86_64 |
* ELF: | | | |
* ---------------------|------------|------------------|----------------|
- * missing PT_GNU_STACK | exec-all | exec-all | exec-all |
+ * missing PT_GNU_STACK | exec-all | exec-all | exec-none |
* PT_GNU_STACK == RWX | exec-stack | exec-stack | exec-stack |
* PT_GNU_STACK == RW | exec-none | exec-none | exec-none |
*
@@ -303,7 +303,7 @@ extern u32 elf_hwcap2;
*
*/
#define elf_read_implies_exec(ex, executable_stack) \
- (executable_stack == EXSTACK_DEFAULT)
+ (mmap_is_ia32() && executable_stack == EXSTACK_DEFAULT)
struct task_struct;
--
cgit 1.2.3-1.el7
This was first present in the 5.8 series. See also Unexpected exec permission from mmap when assembly files included in the project.
来源:https://stackoverflow.com/questions/64833715/linux-default-behavior-against-data-section