问题
I’m trying to write a kernel whose threads iteratively process items in a work queue. My understanding is that I should be able to do this by using atomic operations to manipulate the work queue (i.e., grab work items from the queue and insert new work items into the queue), and using grid synchronization via cooperative groups to ensure all threads are at the same iteration (I ensure the number of thread blocks doesn’t exceed the device capacity for the kernel). However, sometimes I observe that work items are skipped or processed multiple times during an iteration.
The following code is a working example to show this. In this example, an array with the size of input_len
is created, which holds work items 0
to input_len - 1
. The processWorkItems
kernel processes these items for max_iter
iterations. Each work item can put itself and its previous and next work items in the work queue, but marked
array is used to ensure that during an iteration, each work item is added to the work queue at most once. What should happen in the end is that the sum of values in histogram
be equal to input_len * max_iter
, and no value in histogram
be greater than 1. But I observe that occasionally both of these criteria are violated in the output, which implies that I’m not getting atomic operations and/or proper synchronization. I would appreciate it if someone could point out the flaws in my reasoning and/or implementation. My OS is Ubuntu 18.04, CUDA version is 10.1, and I’ve run experiments on P100, V100, and RTX 2080 Ti GPUs, and observed similar behavior.
The command I use for compiling for RTX 2080 Ti:
nvcc -O3 -o atomicsync atomicsync.cu --gpu-architecture=compute_75 -rdc=true
Some inputs and outputs of runs on RTX 2080 Ti:
./atomicsync 50 1000 1000
Skipped 0.01% of items. 5 extra item processing.
./atomicsync 500 1000 1000
Skipped 0.00% of items. 6 extra item processing.
./atomicsync 5000 1000 1000
Skipped 0.00% of items. 14 extra item processing.
atomicsync.cu:
#include <stdio.h>
#include <cooperative_groups.h>
#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
if (result)
{
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", file, line, static_cast<unsigned int>(result), cudaGetErrorString(result), func);
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
__device__ inline void addWorkItem(int input_len, int item, int item_adder, int iter, int *queue, int *queue_size, int *marked) {
int already_marked = atomicExch(&marked[item], 1);
if(already_marked == 0) {
int idx = atomicAdd(&queue_size[iter + 1], 1);
queue[(iter + 1) * input_len + idx] = item;
}
}
__global__ void processWorkItems(int input_len, int max_iter, int *histogram, int *queue, int *queue_size, int *marked) {
auto grid = cooperative_groups::this_grid();
const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;
for(int iter = 0; iter < max_iter; ++iter) {
while(true) {
// Grab work item to process
int idx = atomicSub(&queue_size[iter], 1);
--idx;
if(idx < 0) {
break;
}
int item = queue[iter * input_len + idx];
// Keep track of processed work items
++histogram[iter * input_len + item];
// Add previous, self, and next work items to work queue
if(item > 0) {
addWorkItem(input_len, item - 1, item, iter, queue, queue_size, marked);
}
addWorkItem(input_len, item, item, iter, queue, queue_size, marked);
if(item + 1 < input_len) {
addWorkItem(input_len, item + 1, item, iter, queue, queue_size, marked);
}
}
__threadfence_system();
grid.sync();
// Reset marked array for next iteration
for(int i = 0; i < items_per_block; ++i) {
if(blockIdx.x * items_per_block + i < input_len) {
marked[blockIdx.x * items_per_block + i] = 0;
}
}
__threadfence_system();
grid.sync();
}
}
int main(int argc, char* argv[])
{
int input_len = atoi(argv[1]);
int max_iter = atoi(argv[2]);
int num_blocks = atoi(argv[3]);
// A histogram to keep track of work items that have been processed in each iteration
int histogram_host[input_len * max_iter];
memset(histogram_host, 0, sizeof(int) * input_len * max_iter);
int *histogram_device;
checkCudaErrors(cudaMalloc(&histogram_device, sizeof(int) * input_len * max_iter));
checkCudaErrors(cudaMemcpy(histogram_device, histogram_host, sizeof(int) * input_len * max_iter, cudaMemcpyHostToDevice));
// Size of the work queue for each iteration
int queue_size_host[max_iter + 1];
queue_size_host[0] = input_len;
memset(&queue_size_host[1], 0, sizeof(int) * max_iter);
int *queue_size_device;
checkCudaErrors(cudaMalloc(&queue_size_device, sizeof(int) * (max_iter + 1)));
checkCudaErrors(cudaMemcpy(queue_size_device, queue_size_host, sizeof(int) * (max_iter + 1), cudaMemcpyHostToDevice));
// Work queue
int queue_host[input_len * (max_iter + 1)];
for(int i = 0; i < input_len; ++i) {
queue_host[i] = i;
}
memset(&queue_host[input_len], 0, sizeof(int) * input_len * max_iter);
int *queue_device;
checkCudaErrors(cudaMalloc(&queue_device, sizeof(int) * input_len * (max_iter + 1)));
checkCudaErrors(cudaMemcpy(queue_device, queue_host, sizeof(int) * input_len * (max_iter + 1), cudaMemcpyHostToDevice));
// An array used to keep track of work items already added to the work queue to
// avoid multiple additions of a work item in the same iteration
int marked_host[input_len];
memset(marked_host, 0, sizeof(int) * input_len);
int *marked_device;
checkCudaErrors(cudaMalloc(&marked_device, sizeof(int) * input_len));
checkCudaErrors(cudaMemcpy(marked_device, marked_host, sizeof(int) * input_len, cudaMemcpyHostToDevice));
const dim3 threads(1, 1, 1);
const dim3 blocks(num_blocks, 1, 1);
processWorkItems<<<blocks, threads>>>(input_len, max_iter, histogram_device, queue_device, queue_size_device, marked_device);
checkCudaErrors(cudaDeviceSynchronize());
checkCudaErrors(cudaMemcpy(histogram_host, histogram_device, sizeof(int) * input_len * max_iter, cudaMemcpyDeviceToHost));
int extra = 0;
double deficit = 0;
for(int i = 0; i < input_len; ++i) {
int cnt = 0;
for(int iter = 0; iter < max_iter; ++iter) {
if(histogram_host[iter * input_len + i] > 1) {
++extra;
}
cnt += histogram_host[iter * input_len + i];
}
deficit += max_iter - cnt;
}
printf("Skipped %.2f%% of items. %d extra item processing.\n", deficit / (input_len * max_iter) * 100, extra);
checkCudaErrors(cudaFree(histogram_device));
checkCudaErrors(cudaFree(queue_device));
checkCudaErrors(cudaFree(queue_size_device));
checkCudaErrors(cudaFree(marked_device));
return 0;
}
回答1:
You may wish to read how to do a cooperative grid kernel launch in the programming gude or study any of the cuda sample codes (e.g. reductionMultiBlockCG
, and there are others) that use a grid sync.
You're doing it incorrectly. You cannot launch a cooperative grid with ordinary <<<...>>>
launch syntax. Because of that, there is no reason to assume that the grid.sync()
in your kernel is working correctly.
It's easy to see the grid sync is not working in your code by running it under cuda-memcheck
. When you do that the results will get drastically worse.
When I modify your code to do a proper cooperative launch, I have no issues on Tesla V100:
$ cat t1811.cu
#include <stdio.h>
#include <cooperative_groups.h>
#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
if (result)
{
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", file, line, static_cast<unsigned int>(result), cudaGetErrorString(result), func);
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
__device__ inline void addWorkItem(int input_len, int item, int item_adder, int iter, int *queue, int *queue_size, int *marked) {
int already_marked = atomicExch(&marked[item], 1);
if(already_marked == 0) {
int idx = atomicAdd(&queue_size[iter + 1], 1);
queue[(iter + 1) * input_len + idx] = item;
}
}
__global__ void processWorkItems(int input_len, int max_iter, int *histogram, int *queue, int *queue_size, int *marked) {
auto grid = cooperative_groups::this_grid();
const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;
for(int iter = 0; iter < max_iter; ++iter) {
while(true) {
// Grab work item to process
int idx = atomicSub(&queue_size[iter], 1);
--idx;
if(idx < 0) {
break;
}
int item = queue[iter * input_len + idx];
// Keep track of processed work items
++histogram[iter * input_len + item];
// Add previous, self, and next work items to work queue
if(item > 0) {
addWorkItem(input_len, item - 1, item, iter, queue, queue_size, marked);
}
addWorkItem(input_len, item, item, iter, queue, queue_size, marked);
if(item + 1 < input_len) {
addWorkItem(input_len, item + 1, item, iter, queue, queue_size, marked);
}
}
__threadfence_system();
grid.sync();
// Reset marked array for next iteration
for(int i = 0; i < items_per_block; ++i) {
if(blockIdx.x * items_per_block + i < input_len) {
marked[blockIdx.x * items_per_block + i] = 0;
}
}
__threadfence_system();
grid.sync();
}
}
int main(int argc, char* argv[])
{
int input_len = atoi(argv[1]);
int max_iter = atoi(argv[2]);
int num_blocks = atoi(argv[3]);
// A histogram to keep track of work items that have been processed in each iteration
int *histogram_host = new int[input_len * max_iter];
memset(histogram_host, 0, sizeof(int) * input_len * max_iter);
int *histogram_device;
checkCudaErrors(cudaMalloc(&histogram_device, sizeof(int) * input_len * max_iter));
checkCudaErrors(cudaMemcpy(histogram_device, histogram_host, sizeof(int) * input_len * max_iter, cudaMemcpyHostToDevice));
// Size of the work queue for each iteration
int queue_size_host[max_iter + 1];
queue_size_host[0] = input_len;
memset(&queue_size_host[1], 0, sizeof(int) * max_iter);
int *queue_size_device;
checkCudaErrors(cudaMalloc(&queue_size_device, sizeof(int) * (max_iter + 1)));
checkCudaErrors(cudaMemcpy(queue_size_device, queue_size_host, sizeof(int) * (max_iter + 1), cudaMemcpyHostToDevice));
// Work queue
int *queue_host = new int[input_len * (max_iter + 1)];
for(int i = 0; i < input_len; ++i) {
queue_host[i] = i;
}
memset(&queue_host[input_len], 0, sizeof(int) * input_len * max_iter);
int *queue_device;
checkCudaErrors(cudaMalloc(&queue_device, sizeof(int) * input_len * (max_iter + 1)));
checkCudaErrors(cudaMemcpy(queue_device, queue_host, sizeof(int) * input_len * (max_iter + 1), cudaMemcpyHostToDevice));
// An array used to keep track of work items already added to the work queue to
// avoid multiple additions of a work item in the same iteration
int marked_host[input_len];
memset(marked_host, 0, sizeof(int) * input_len);
int *marked_device;
checkCudaErrors(cudaMalloc(&marked_device, sizeof(int) * input_len));
checkCudaErrors(cudaMemcpy(marked_device, marked_host, sizeof(int) * input_len, cudaMemcpyHostToDevice));
const dim3 threads(1, 1, 1);
const dim3 blocks(num_blocks, 1, 1);
int dev = 0;
int supportsCoopLaunch = 0;
checkCudaErrors(cudaDeviceGetAttribute(&supportsCoopLaunch, cudaDevAttrCooperativeLaunch, dev));
if (!supportsCoopLaunch) {printf("Cooperative Launch is not supported on this machine configuration. Exiting."); return 0;}
/// This will launch a grid that can maximally fill the GPU, on the default stream with kernel arguments
int numBlocksPerSm = 0;
// Number of threads my_kernel will be launched with
int numThreads = threads.x;
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, processWorkItems, numThreads, 0));
// launch
void *kernelArgs[] = { &input_len, &max_iter, &histogram_device, &queue_device, &queue_size_device, &marked_device};
dim3 dimBlock = dim3(numThreads,1,1);
num_blocks = min(num_blocks, deviceProp.multiProcessorCount*numBlocksPerSm);
dim3 dimGrid(num_blocks, 1, 1);
printf("launching %d blocks\n", dimGrid.x);
checkCudaErrors(cudaLaunchCooperativeKernel((void*)processWorkItems, dimGrid, dimBlock, kernelArgs));
// processWorkItems<<<blocks, threads>>>(input_len, max_iter, histogram_device, queue_device, queue_size_device, marked_device);
checkCudaErrors(cudaDeviceSynchronize());
checkCudaErrors(cudaMemcpy(histogram_host, histogram_device, sizeof(int) * input_len * max_iter, cudaMemcpyDeviceToHost));
int extra = 0;
double deficit = 0;
for(int i = 0; i < input_len; ++i) {
int cnt = 0;
for(int iter = 0; iter < max_iter; ++iter) {
if(histogram_host[iter * input_len + i] > 1) {
++extra;
}
cnt += histogram_host[iter * input_len + i];
}
deficit += max_iter - cnt;
}
printf("Skipped %.2f%% of items. %d extra item processing.\n", deficit / (input_len * max_iter) * 100, extra);
checkCudaErrors(cudaFree(histogram_device));
checkCudaErrors(cudaFree(queue_device));
checkCudaErrors(cudaFree(queue_size_device));
checkCudaErrors(cudaFree(marked_device));
return 0;
}
$ nvcc -o t1811 t1811.cu -arch=sm_70 -std=c++11 -rdc=true
$ cuda-memcheck ./t1811 50 1000 5000
========= CUDA-MEMCHECK
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ cuda-memcheck ./t1811 50 1000 1000
========= CUDA-MEMCHECK
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ ./t1811 50 1000 5000
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$
I'm not suggesting the above code is defect free or suitable for any particular purpose. It is mostly your code. I've modified it just to demonstrate the concepts mentioned.
As an aside, I changed a few of your large stack-based memory allocations to heap based. I don't recommend trying to create large stack-based arrays such as this:
int histogram_host[input_len * max_iter];
in my opinion its better to do:
int *histogram_host = new int[input_len * max_iter];
As your input command-line parameters become larger, this may become an issue depending on the machine characteristics. This doesn't have much to do with CUDA, however. I've not tried to address every instance of this pattern in your code.
Although not relevant to this particular question, grid sync has other requirements for successful use as well. These are covered in the programming guide and may include but not limited to:
- platform support (e.g. OS, GPU, etc.)
- kernel sizing requirements (total number of threads or threadblocks launched)
The programming guide contains convenient, boiler-plate code that may be used to satisfy these requirements.
来源:https://stackoverflow.com/questions/63929929/processing-shared-work-queue-using-cuda-atomic-operations-and-grid-synchronizati