hive性能调优

亡梦爱人 提交于 2020-12-19 04:36:35

hive性能调优

(一)Hadoop 计算框架的特性

什么是数据倾斜

由于数据的不均衡原因,导致数据分布不均匀,造成数据大量的集中到一点,造成数据热点

Hadoop框架的特性

不怕数据大,怕数据倾斜

jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长。原因是map reduce作业初始化的时间是比较长的

sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合并优化,使数据倾斜不成问题

count(distinct ),在数据量大的情况下,效率较低,因为count(distinct)是按group by 字段分组,按distinct字段排序,一般这种分布方式是很倾斜的

(二)优化的常用手段

(1)解决数据倾斜问题

(2)减少job数

(3)设置合理的map reduce的task数,能有效提升性能。

(4)了解数据分布,自己动手解决数据倾斜问题是个不错的选择

(5)数据量较大的情况下,慎用count(distinct)。

(6)对小文件进行合并,是行至有效的提高调度效率的方法。

(7)优化时把握整体,单个作业最优不如整体最优。

(三)Hive的数据类型方面的优化

优化原则

(1)按照一定规则分区(例如根据日期)。通过分区,查询的时候指定分区,会大大减少在无用数据上的扫描, 同时也非常方便数据清理。

(2)合理的设置Buckets。在一些大数据join的情况下,map join有时候会内存不够。如果使用Bucket Map Join的话,可以只把其中的一个bucket放到内存中,内存中原来放不下的内存表就变得可以放下。这需要使用buckets的键进行join的条件连结,并且需要如下设置

set hive.optimize.bucketmapjoin = true

(四)Hive的操作方面的优化

(1)全排序

Hive的排序关键字是SORT BY,它有意区别于传统数据库的ORDER BY也是为了强调两者的区别–SORT BY只能在单机范围内排序

(2)怎样做笛卡尔积

当Hive设定为严格模式(hive.mapred.mode=strict)时,不允许在HQL语句中出现笛卡尔积

MapJoin是一个解决办法

MapJoin,顾名思义,会在Map端完成Join操作。这需要将Join操作的一个或多个表完全读入内存

MapJoin的用法是在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为MapJoin(目前Hive的优化器不能自动优化MapJoin)

其中tablelist可以是一个表,或以逗号连接的表的列表。tablelist中的表将会读入内存,应该将小表写在这里

在大表和小表做笛卡尔积时,规避笛卡尔积的方法是,给Join添加一个Join key,原理很简单:将小表扩充一列join key,并将小表的条目复制数倍,join key各不相同;将大表扩充一列join key为随机数

(3)控制Hive的Map数

通常情况下,作业会通过input的目录产生一个或者多个map任务

主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改)

是不是map数越多越好

答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。

是不是保证每个map处理接近128m的文件块,就高枕无忧了?

答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。

针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数;

举例

a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数

b)假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数

即如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块

(4)怎样决定reducer个数

Hadoop MapReduce程序中,reducer个数的设定极大影响执行效率

不指定reducer个数的情况下,Hive会猜测确定一个reducer个数,基于以下两个设定:

参数1:hive.exec.reducers.bytes.per.reducer(默认为1G)

参数2 :hive.exec.reducers.max(默认为999)

计算reducer数的公式

N=min(参数2,总输入数据量/参数1)

依据Hadoop的经验,可以将参数2设定为0.95*(集群中TaskTracker个数)

reduce个数并不是越多越好

同map一样,启动和初始化reduce也会消耗时间和资源;

另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题

什么情况下只有一个reduce

很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;

其实只有一个reduce任务的情况,除了数据量小于

hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:

a)没有group by的汇总

b)用了Order by

(5)合并 MapReduce 操作

Multi-group by

Multi-group by是Hive的一个非常好的特性,它使得Hive中利用中间结果变得非常方便

FROM log

insert overwrite table test1 select log.id group by log.id

insert overwrite table test2 select log.name group by log.name

上述查询语句使用了Multi-group by特性连续group by了2次数据,使用不同的group by key。这一特性可以减少一次MapReduce操作。

Bucket 与 Sampling

Bucket是指将数据以指定列的值为key进行hash,hash到指定数目的桶中。这样就可以支持高效采样了

Sampling可以在全体数据上进行采样,这样效率自然就低,它还是要去访问所有数据。而如果一个表已经对某一列制作了bucket,就可以采样所有桶中指定序号的某个桶,这就减少了访问量。

如下例所示就是采样了test中32个桶中的第三个桶。

SELECT * FROM test 、、、TABLESAMPLE(BUCKET 3 OUT OF 32);

(6)JOIN 原则

在使用写有 Join 操作的查询语句时有一条原则:应该将条目少的表/子查询放在 Join 操作符的左边

原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生 OOM 错误的几率

Map Join

Join 操作在 Map 阶段完成,不再需要Reduce,前提条件是需要的数据在 Map 的过程中可以访问到

例如:

INSERT OVERWRITE TABLE phone_traffic

SELECT /*+ MAPJOIN(phone_location) */ l.phone,p.location,l.traffic from phone_location p join log l on (p.phone=l.phone)

相关的参数为:

hive.join.emit.interval = 1000 How many rows in the right-most join operand Hive should buffer before emitting the join result.

hive.mapjoin.size.key = 10000

hive.mapjoin.cache.numrows = 10000

(7)Group By

Map 端部分聚合

并不是所有的聚合操作都需要在 Reduce 端完成,很多聚合操作都可以先在 Map 端进行部分聚合,最后在 Reduce 端得出最终结果

基于 Hash

参数包括:

hive.map.aggr = true 是否在 Map 端进行聚合,默认为 True

hive.groupby.mapaggr.checkinterval = 100000 在 Map 端进行聚合操作的条目数目

有数据倾斜的时候进行负载均衡

hive.groupby.skewindata = false

当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

(8)合并小文件

文件数目过多,会给 HDFS 带来压力,并且会影响处理效率,可以通过合并 Map 和 Reduce 的结果文件来消除这样的影响:

hive.merge.mapfiles = true 是否和并 Map 输出文件,默认为 True

hive.merge.mapredfiles = false 是否合并 Reduce 输出文件,默认为 False

hive.merge.size.per.task = 256*1000*1000 合并文件的大小

 

以上就是博主为大家介绍的这一板块的主要内容,这都是博主自己的学习过程,希望能给大家带来一定的指导作用,有用的还望大家点个支持,如果对你没用也望包涵,有错误烦请指出。如有期待可关注博主以第一时间获取更新哦,谢谢! 

 版权声明:本文为博主原创文章,未经博主允许不得转载。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!