如何利用Python做数据分析 需要学习哪些知识

ぐ巨炮叔叔 提交于 2020-12-17 13:33:05

根据调查结果,十大最常用的数据工具中有八个来自或利用Python。Python广泛应用于所有数据科学领域,包括数据分析、机器学习、深度学习和数据可视化。不过你知道如何利用Python做数据分析吗?需要学习哪些知识?下面就给大家讲解一下。

与数据分析相关的Python库很多,比如Numpy、pandas、matplotlib、scipy等,数据分析的操作包括数据的导入和导出、数据筛选、数据描述、数据处理、统计分析、可视化等等。接下来我们看一下如何利用Python完成数据的分析。

 

如何利用Python做数据分析 需要学习哪些知识

 

 

生成数据表

常见的生成方法有两种,第一种是导入外部数据,第二种是直接写入数据,Python支持从多种类型的数据导入。在开始使用Python进行数据导入前需要先导入pandas库,为了方便起见,我们也同时导入Numpy库。代码是最简模式,里面有很多可选参数设置,例如列名称、索引列、数据格式等等。

检查数据表

Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Isnull是Python中检验空值的函数,你可以对整个数据表进行检查,也可以单独对某一列进行空值检查,返回的结果是逻辑值,包含空值返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。

数据表清洗

Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_duplicates函数删除重复值,replace函数实现数据替换。

数据预处理

数据预处理是对清洗完的数据进行整理以便后期的统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。

数据提取

主要是使用三个函数:loc、iloc和ix,其中loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提起数据以外,还可以按具体的条件进行数据,比如使用loc和isin两个函数配合使用,按指定条件对数据进行提取。

数据筛选汇总

Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和 count函数还能实现excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。groupby是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,groupby 按列名称出现的顺序进行分组。

当然,使用Python做数据分析还有很多操作。如果你想让Python成为你的事业,建议你还是选择专业的学习比较好。建议大家从学习的内容,环境,教得怎么样,是否面授几方面来选择,再去实地试听一下,适合自己的就是最好的。 如果你对Python感兴趣,欢迎加入我们【python学习交流】,免费领取学习资料和源码。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!