问题
Can this be done without a loop?
import numpy as np
n = 10
x = np.random.random(n+1)
a, b = 0.45, 0.55
for i in range(n):
x = a*x[:-1] + b*x[1:]
I came across this setup in another question. There it was a covered by a little obscure nomenclature. I guess it is related to Binomial options pricing model but don't quite understand the topic to be honest. I just was intrigued by the formula and this iterative update / shrinking of x
and wondered if it can be done without a loop. But I can not wrap my head around it and I am not sure if this is even possible.
What makes me think that it might work is that this vatiaton
n = 10
a, b = 0.301201, 0.59692
x0 = 123
x = x0
for i in range(n):
x = a*x + b*x
# ~42
is actually just x0*(a + b)**n
print(np.allclose(x, x0*(a + b)**n))
# True
回答1:
You are calculating:
sum( a ** (n - i) * b ** i * x[i] * choose(n, i) for 0 <= i <= n)
[That's meant to be pseudocode, not Python.] I'm not sure of the best way to convert that into Numpy.
choose(n, i)
is n!/ (i! (n-i)!)
, not the numpy choose function.
Using @mathfux
's comment, one can do
import numpy as np
from scipy.stats import binom
binomial = binom(p=p, n=n)
pmf = binomial(np.arange(n+1))
res = np.sum(x * pmf)
So
res = x.copy()
for i in range(n):
res = p*res[1:] + (p-1)*res[:-1]
is just the expected value of a binomial distributed random variable x.
来源:https://stackoverflow.com/questions/64309546/iterative-binomial-update-without-loop