问题
I really need to find ROC plot for each folds in a 5 fold cross-validation using Keras ANN. I have tried the code from the following link [https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py][1] It works perfectly fine when I'm using the svm classifier as shown here. But when I want to use wrapper to use Keras ANN model it shows errors. I am stuck with this for months now. Can anyone please help me with it? Here's my code:
# Load libraries
import numpy as np
from keras import models
from keras import layers
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import StratifiedKFold
X, y = load_breast_cancer(return_X_y=True)
# Create function returning a compiled network
def create_network():
# Start neural network
network = models.Sequential()
# Add fully connected layer with a ReLU activation function
network.add(layers.Dense(units=16, activation='relu', input_shape=(30,)))
# Add fully connected layer with a ReLU activation function
network.add(layers.Dense(units=16, activation='relu'))
# Add fully connected layer with a sigmoid activation function
network.add(layers.Dense(units=1, activation='sigmoid'))
# Compile neural network
network.compile(loss='binary_crossentropy', # Cross-entropy
optimizer='rmsprop', # Root Mean Square Propagation
metrics=['accuracy']) # Accuracy performance metric
# Return compiled network
return network
cv = StratifiedKFold(n_splits=5)
# Wrap Keras model so it can be used by scikit-learn
classifier = KerasClassifier(build_fn=create_network,
epochs=10,
batch_size=100,
verbose=2)
#Plotting the ROC curve
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
fig, ax = plt.subplots()
for i, (train, test) in enumerate(cv.split(X, y)):
classifier.fit(X[train], y[train])
viz = plot_roc_curve(classifier, X[test], y[test],
name='ROC fold {}'.format(i),
alpha=0.3, lw=1, ax=ax)
interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
aucs.append(viz.roc_auc)
ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
label='Chance', alpha=.8)
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
ax.plot(mean_fpr, mean_tpr, color='b',
label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc),
lw=2, alpha=.8)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,
label=r'$\pm$ 1 std. dev.')
ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],
title="Receiver operating characteristic example")
ax.legend(loc="lower right")
plt.show()
It shows the following error:
Epoch 1/10
5/5 - 0s - loss: 24.0817 - accuracy: 0.3714
Epoch 2/10
5/5 - 0s - loss: 2.7967 - accuracy: 0.5648
Epoch 3/10
5/5 - 0s - loss: 2.0594 - accuracy: 0.5363
Epoch 4/10
5/5 - 0s - loss: 2.4763 - accuracy: 0.5604
Epoch 5/10
5/5 - 0s - loss: 2.5489 - accuracy: 0.5121
Epoch 6/10
5/5 - 0s - loss: 2.0528 - accuracy: 0.6132
Epoch 7/10
5/5 - 0s - loss: 1.5593 - accuracy: 0.6088
Epoch 8/10
5/5 - 0s - loss: 2.0422 - accuracy: 0.5626
Epoch 9/10
5/5 - 0s - loss: 1.9191 - accuracy: 0.6242
Epoch 10/10
5/5 - 0s - loss: 1.9914 - accuracy: 0.5582
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-104-2d127e528fbe> in <module>()
8 viz = plot_roc_curve(classifier, X[test], y[test],
9 name='ROC fold {}'.format(i),
---> 10 alpha=0.3, lw=1, ax=ax)
11 interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
12 interp_tpr[0] = 0.0
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_plot/roc_curve.py in plot_roc_curve(estimator, X, y, sample_weight, drop_intermediate, response_method, name, ax, **kwargs)
170 )
171 if not is_classifier(estimator):
--> 172 raise ValueError(classification_error)
173
174 prediction_method = _check_classifer_response_method(estimator,
ValueError: KerasClassifier should be a binary classifier
回答1:
This is an implementational detail that is (probably) missing in this wrapper library.
Sklearn simply checks whether an attribute called _estimator_type
is present on the estimator and is set to string value classifier
. You can see that by looking into sklearn's source code on github.
def is_classifier(estimator):
"""Return True if the given estimator is (probably) a classifier.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if estimator is a classifier and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "classifier"
All you need to do is to add this attribute to your classifier object manually.
classifier = KerasClassifier(build_fn=create_network,
epochs=10,
batch_size=100,
verbose=2)
classifier._estimator_type = "classifier"
I have tested it and it works.
来源:https://stackoverflow.com/questions/64864874/how-to-plot-roc-auc-curve-for-each-folds-in-kfold-cross-validation-using-keras-n