安全调试的前世今生
对于MCU的开发工程师来说,MCU的调试接口是必不可少的开发利器。透过调试接口,我们可以监视MCU的运行状态,查看或修改寄存器的数值,观察内存中的数据变化,通过IDE、调试器等开发工具配合,方便地排查各种棘手的问题。
我们需要了解的一切信息,调试接口都知无不言,言无不尽。
那么问题来了,在产品出厂后,黑客、攻击者就可以利用强大的调试接口对设备进行各种攻击,窃取产品中的敏感信息;黑色产业链也可以通过调试接口,轻而易举地读取出设备的固件,从而生产制造廉价的“破解版”。
正是由于调试接口功能强大,这个开发过程中的利器,也给产品带来了安全的漏洞和知识产权泄露的隐患。
针对这个问题,很多高附加值或安全敏感的产品,会选择在生产过程的最后一步,通过修改OTP Fuse等方式,将调试接口永久地禁掉。产品出厂后,调试接口已被封死,简单粗暴地解决调试接口带来的风险。
但是,产品的售后、维护往往不是一帆风顺的。产品在客户现场,也许会出现各种各样奇奇怪怪的问题。此时,由于调试接口被封掉,留给我们的调试排查手段捉襟见肘,产品出现问题后,难以定位更难以解决。
有没有一种方法,只能让开发者合法地调试芯片,而不会被攻击者利用呢?
Secure Debug安全调试
传统的手段,是将调试接口永远的封死,那么Secure Debug就像是给调试接口加了一把坚固的锁,只有能打开这把锁的人才能使用调试功能。
毫无疑问,“锁”比“封”要更加灵活。那么,我们应该选择使用一把什么样的锁呢?
密码锁
这是一种简单有效的方案,适用于绝大多数芯片。其大致流程如下所示:
在产品的生产过程中,“解锁密码”提前烧录至芯片的OTP内,然后将调试功能“上锁”,此时调试功能是不可用的。
当需要调试芯片时,芯片会通过JTAG接口发送UUID,这时调试主机根据UUID发送相应的解锁密码,若解锁密码与芯片中预存的密码一致,芯片将会开放调试功能。
可以看到,按照上图的机制,基本可以解决我们上文中提出的问题,这也是目前i.MX RT10xx原生支持的Secure JTAG机制(详情请参考应用笔记AN12419)。
认证锁(Debug authentication)
MCU功能越来越丰富,越来越多的MCU拥有不止一个内核,其中的内核有可能还支持Trustzone。例如LPC5500家族的LPC55S69,拥有Core 0和Core 1两个Cortex M33内核,其中Core 0还支持Trustzone技术。
这同时也对我们的调试安全提出了更多的需求,我们不仅需要一把调试锁控制调试功能的开与关,还需要这把锁足够“聪明”,能够提供更细粒度的权限管理。
例如,我们希望外部攻击者不能调试LPC55S69;某些内部人员只能调试LPC55S69的Core 1,不能调试LPC55S69的Core 0,某些内部人员只能够调试Core 0的非安全区域,某些内部人员可以调试整个LPC55S69……
为了满足灵活的调试权限管理需求,LPC5500提供了一种全新的机制:Debug authentication,利用非对称加密机制(RSA2048/RSA4096),通过证书(DC:Debug Credential Certificate)来授予不同的权限,ODM或设计部门为不同的人员颁发不同的证书,证书中将会明确其所拥有的调试权限。
在调试认证时,芯片会根据某一个人员所持有的证书,对其进行Challenge-Response验证,首先将Response(即DAR:Debug AuthenticationResponse)中的DC与芯片中预置的信息进行匹配,当验证DC为合法后,验证Response中的签名,若证书与签名都验证通过,且请求的调试权限符合芯片的设置,芯片将会开放相应的权限。其大致流程如下所示:
可以看出,这种Debug authentication机制解决了调试接口的安全问题,也满足了调试权限灵活管理的需求。
小结
相对来说,Debug authentication需要做的准备工作比较多,本文简单描述了Debug authentication的基本机制,并未提供详细的操作步骤。
如何生成DC/DAR、如何对芯片进行预处理、如何完成一次Debug authentication,请参考应用笔记AN13037,并且NXP提供了开源的工具,参考应用笔记就能够利用工具完成所有工作。
免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。
来源:oschina
链接:https://my.oschina.net/u/4300092/blog/4793822