Redis的过期策略和内存淘汰策略

故事扮演 提交于 2020-12-05 00:59:28

Redis的过期策略和内存淘汰策略搞混淆了。

Redis的过期策略

我们都知道,Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间。Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理。

过期策略通常有以下三种:

  • 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。
  • 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。
  • 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。
    (expires字典会保存所有设置了过期时间的key的过期时间数据,其中,key是指向键空间中的某个键的指针,value是该键的毫秒精度的UNIX时间戳表示的过期时间。键空间是指该Redis集群中保存的所有键。)

Redis中同时使用了惰性过期和定期过期两种过期策略。

Redis的内存淘汰策略

Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。

  • noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。
  • allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。
  • allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。
  • volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。
  • volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
  • volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。

总结

Redis的内存淘汰策略的选取并不会影响过期的key的处理。内存淘汰策略用于处理内存不足时的需要申请额外空间的数据;过期策略用于处理过期的缓存数据。

 

Redis开发建议

最后附上Redis的一些开发规范和建议

1. 冷热数据分离,不要将所有数据全部都放到Redis中

虽然Redis支持持久化,但是Redis的数据存储全部都是在内存中的,成本昂贵。建议根据业务只将高频热数据存储到Redis中【QPS大于5000】,对于低频冷数据可以使用MySQL/ElasticSearch/MongoDB等基于磁盘的存储方式,不仅节省内存成本,而且数据量小在操作时速度更快、效率更高!

2. 不同的业务数据要分开存储

不要将不相关的业务数据都放到一个Redis实例中,建议新业务申请新的单独实例。因为Redis为单线程处理,独立存储会减少不同业务相互操作的影响,提高请求响应速度;同时也避免单个实例内存数据量膨胀过大,在出现异常情况时可以更快恢复服务! 在实际的使用过程中,redis最大的瓶颈一般是CPU,由于它是单线程作业所以很容易跑满一个逻辑CPU,可以使用redis代理或者是分布式方案来提升redis的CPU使用率。

3. 存储的Key一定要设置超时时间

如果应用将Redis定位为缓存Cache使用,对于存放的Key一定要设置超时时间!因为若不设置,这些Key会一直占用内存不释放,造成极大的浪费,而且随着时间的推移会导致内存占用越来越大,直到达到服务器内存上限!另外Key的超时长短要根据业务综合评估,而不是越长越好!

4. 对于必须要存储的大文本数据一定要压缩后存储

对于大文本【+超过500字节】写入到Redis时,一定要压缩后存储!大文本数据存入Redis,除了带来极大的内存占用外,在访问量高时,很容易就会将网卡流量占满,进而造成整个服务器上的所有服务不可用,并引发雪崩效应,造成各个系统瘫痪!

5. 线上Redis禁止使用Keys正则匹配操作

Redis是单线程处理,在线上KEY数量较多时,操作效率极低【时间复杂度为O(N)】,该命令一旦执行会严重阻塞线上其它命令的正常请求,而且在高QPS情况下会直接造成Redis服务崩溃!如果有类似需求,请使用scan命令代替!

6. 可靠的消息队列服务

Redis List经常被用于消息队列服务。假设消费者程序在从队列中取出消息后立刻崩溃,但由于该消息已经被取出且没有被正常处理,那么可以认为该消息已经丢失,由此可能会导致业务数据丢失,或业务状态不一致等现象发生。
为了避免这种情况,Redis提供了RPOPLPUSH命令,消费者程序会原子性的从主消息队列中取出消息并将其插入到备份队列中,直到消费者程序完成正常的处理逻辑后再将该消息从备份队列中删除。同时还可以提供一个守护进程,当发现备份队列中的消息过期时,可以重新将其再放回到主消息队列中,以便其它的消费者程序继续处理。

7. 谨慎全量操作Hash、Set等集合结构

在使用HASH结构存储对象属性时,开始只有有限的十几个field,往往使用HGETALL获取所有成员,效率也很高,但是随着业务发展,会将field扩张到上百个甚至几百个,此时还使用HGETALL会出现效率急剧下降、网卡频繁打满等问题【时间复杂度O(N)】,此时建议根据业务拆分为多个Hash结构;或者如果大部分都是获取所有属性的操作,可以将所有属性序列化为一个STRING类型存储!同样在使用SMEMBERS操作SET结构类型时也是相同的情况!

8. 根据业务场景合理使用不同的数据结构类型

目前Redis支持的数据库结构类型较多:字符串(String),哈希(Hash),列表(List),集合(Set),有序集合(Sorted Set), Bitmap, HyperLogLog和地理空间索引(geospatial)等,需要根据业务场景选择合适的类型。

常见的如:String可以用作普通的K-V、计数类;Hash可以用作对象如商品、经纪人等,包含较多属性的信息;List可以用作消息队列、粉丝/关注列表等;Set可以用于推荐;Sorted Set可以用于排行榜等!

9. 命名规范

虽然说Redis支持多个数据库(默认32个,可以配置更多),但是除了默认的0号库以外,其它的都需要通过一个额外请求才能使用。所以用前缀作为命名空间可能会更明智一点。

另外,在使用前缀作为命名空间区隔不同key的时候,最好在程序中使用全局配置来实现,直接在代码里写前缀的做法要严格避免,这样可维护性实在太差了。

如:系统名:业务名:业务数据:其他

但是注意,key的名称不要过长,尽量清晰明了,容易理解,需要自己衡量

10. 线上禁止使用monitor命令

禁止生产环境使用monitor命令,monitor命令在高并发条件下,会存在内存暴增和影响Redis性能的隐患

11. 禁止大string

核心集群禁用1mb的string大key(虽然redis支持512MB大小的string),如果1mb的key每秒重复写入10次,就会导致写入网络IO达10MB;

12. redis容量

单实例的内存大小不建议过大,建议在10~20GB以内。redis实例包含的键个数建议控制在1kw内,单实例键个数过大,可能导致过期键的回收不及时。

13. 可靠性

需要定时监控redis的健康情况:使用各种redis健康监控工具,实在不行可以定时返回redis的info信息。客户端连接尽量使用连接池(长链接和自动重连)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!