异常检测,GAN如何gan ?

点点圈 提交于 2020-12-04 16:58:07

     欢迎点击上方蓝字,关注啦 ~

相关阅读:

【1】GAN在医学图像上的生成,今如何?

虚拟换衣!速览这几篇最新论文咋做的!
脸部妆容迁移!速览几篇用GAN来做的论文
GAN整整6年了!是时候要来捋捋了!
01-GAN公式简明原理之铁甲小宝篇

今天记录一下、一些用GAN来做异常检测的论文!

异常检测(Anomaly detection),一个很常见的问题。


在图像方面,比如每天出入地铁安检,常常看到小姐姐小哥哥们坐在那盯着你的行李过检图像,类似如下(图来自GANomaly论文):



又比如在一些医学图像分析上,源自健康人的影像也许是比较容易获取的,并且图像的“模式”往往固定或者不多变的,而病变的图像数量是很少、很难获取,或者病变区域多变、甚至未知的,此时异常检测就面临着正样本/异常图像很少,而相对地,正常图像更容易获得的情况。这种情况其实在很多场景下有所体现,比如工业视觉检测等等。


对于已知类别、数量较多情况下,不管异常与否,我们也许可以通过训练一个分类模型就能解决。但面对也许未知、多变的情况,要想用一个多分类模型分辨出来似乎很难。如果是想仅仅分辨出是不是异常,那也许可以做一个单分类器即可。


我们尽可能地去让模型充分学习正常数据的分布长什么样子,一旦来了异常图像,它即便不知道这是啥新的分布,但依旧可以自信地告诉你:这玩意儿没见过,此乃异类也!

用GAN一些网络怎么做呢?大体思想是:

在仅有负样本(正常数据)或者少量正样本情况下:


训练阶段:

      可以通过网络仅仅学习负样本(正常数据)的数据分布,得到的模型G只能生成或者重建正常数据。


测试阶段:

      使用测试样本输入训练好的模型G,如果G经过重建后输出和输入一样或者接近,表明测试的是正常数据,否则是异常数据。


模型G的选择:

      一个重建能力或者学习数据分布能力较好的生成模型,例如GAN或者VAE,甚至encoder-decoder。


下面速览几篇论文、看看GAN是如何做异常检测的(数据主要为图像形式):


1. IPMI 2017 AnoGAN ( Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery )

思路:通过一个GAN的生成器G来学习正常数据的分布,测试时图像通过学习到的G找到它应该的正常图的样子,再通过对比来找到异常与否的情况。




如上图所示,AnoGAN论文中采用的是DCGAN,一种较简单的GAN架构。


训练阶段

      对抗训练,从一个噪声向量Z通过几层反卷积搭建的生成器G学习生成正常数据图像。


测试阶段

      随机采样一个高斯噪声向量z,想要通过已经训练好的G生成一幅和测试图像x对应的正常图像G(z)。G的参数是固定的,它只能生成落在正常数据分布的图像。但此时仍需进行训练,把z看成待更新的参数,通过比较G(z)和x的差异去更新,从而生成一个与x尽可能相似、理想对应的正常图像。


如果x是正常的图像,那么x和G(z)应该是一样的。


如果x异常,通过更新z,可以认为重建出了异常区域的理想的正常情况,这样两图一对比不仅仅可以认定异常情况,同时还可以找到异常区域。


为了比较G(z)和x差异去更新z:

一是通过计算G(z)和x的图像层面的L1 loss:

二是利用到训练好的判别器D,取G(z)和x在判别器D的中间层的特征层面的loss:

两者综合:

另外,异常分数计算方法:

2. 2018-02 EFFICIENT GAN-BASED ANOMALY DETECTION

针对AnoGAN测试阶段仍然需要更新参数的缺陷,此方法提出一种基于BiGAN可快百倍的方法。


训练时,同时学习将输入样本x映射到潜在表示z的编码器E,以及生成器G和判别器D:

如此可避免测试仍需要“找到z”那个耗时的步骤。与常规GAN中的D仅考虑输入(实际的或生成的)图像不同,而还考虑了潜在表示z(作为输入)。


测试时,判断图像的异常与否的分值计算方法,可选择可AnoGAN基本一样的方法。

3. 2018-12 Adversarially Learned Anomaly Detection

第二种方法的加强版,也是基于BiGAN,并且在稳定训练上做了些功夫。如下所示,(乖乖,搞了三个判别器 =_=

检测时的计算方法:

4. 2018-11-13 GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training

原理:

训练时,约束正常的数据编码得到潜在空间表示z1,和对z1解码、再编码得到的z2,差距不会特别大,理想应该是一样的。


所以训练好后,用正常样本训练好的 G只能重建正常数据分布,一旦用于从未见过的异常样本编码、解码、再经历编码得到的潜在空间Z差距是大的。


当两次编码得到的潜在空间差距大于一定阈值的时候,就判定样本是异常样本。

5. 2019-01-25 Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection

6. PRICAI 2018 A Surface Defect Detection Method Based on Positive Samples

原理:


C(x~|x)是人工缺陷制造模块。X~是模拟缺陷的样本,经过EN-DE编码解码器后重建正常样本Y。


测试阶段,X输入EN-DE后得到理想正常样本y,使用LBP对Y和X逐像素特征比较,相差大则有缺陷。

7. MIDL 2018  Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders

使用的是AAE来学习建模正常数据分布。有时,对于在正常分布的的两个数据之间的距离,比一个正常和一个异常之间的距离还大,所以提出在隐空间也加一个约束。



暂时先写到这吧。


最后,欢迎关注公众号啦~

最后的最后,再来发一波、到目前为止部分、用 GAN异常检测的基本相关(直接用“adversarial anomaly detection”在arxiv上爬下来的,不一定相关! 2333 )论文供参考!!!

 

001 (2019-12-10) Event Detection in Micro-PMU Data  A Generative Adversarial Network ScoringMethod
    https://arxiv.xilesou.top/pdf/1912.05103.pdf
 
002 (2019-12-10) Outage Detection in Partially Observable DistributionSystems using Smart Meters and Generative Adversarial Networks
    https://arxiv.xilesou.top/pdf/1912.04992.pdf
 
003 (2019-12-9) Oversampling Log Messages Using a Sequence GenerativeAdversarial Network for Anomaly Detection and Classification
    https://arxiv.xilesou.top/pdf/1912.04747.pdf
 
004 (2019-12-2) Anomaly Detection in Particulate Matter Sensor usingHypothesis Pruning Generative Adversarial Network
    https://arxiv.xilesou.top/pdf/1912.00583.pdf
 
005 (2019-11-27) Sparse-GAN Sparsity-constrained Generative Adversarial Network for AnomalyDetection in Retinal OCT Image
    https://arxiv.xilesou.top/pdf/1911.12527.pdf
 
006 (2019-11-21) EvAn  NeuromorphicEvent-based Anomaly Detection
    https://arxiv.xilesou.top/pdf/1911.09722.pdf
 
007 (2019-11-19) Attention Guided Anomaly Detection and Localization in Images
    https://arxiv.xilesou.top/pdf/1911.08616.pdf
 
008 (2019-11-17) Deep Verifier Networks Verification of Deep Discriminative Models with Deep Generative Models
    https://arxiv.xilesou.top/pdf/1911.07421.pdf
 
009 (2019-11-16) RSM-GAN  A ConvolutionalRecurrent GAN for Anomaly Detection in Contaminated Seasonal Multivariate TimeSeries
    https://arxiv.xilesou.top/pdf/1911.07104.pdf
 
010 (2019-10-30) Robust and Computationally-Efficient Anomaly Detectionusing Powers-of-Two Networks
    https://arxiv.xilesou.top/pdf/1910.14096.pdf
 
011 (2019-10-29) Small-GAN  SpeedingUp GAN Training Using Core-sets
    https://arxiv.xilesou.top/pdf/1910.13540.pdf
 
012 (2019-10-23) Photoshopping Colonoscopy Video Frames
    https://arxiv.xilesou.top/pdf/1910.10345.pdf
 
013 (2019-10-21) GraphSAC  Detectinganomalies in large-scale graphs
    https://arxiv.xilesou.top/pdf/1910.09589.pdf
 
014 (2019-10-21) Adversarial Anomaly Detection for Marked Spatio-TemporalStreaming Data
    https://arxiv.xilesou.top/pdf/1910.09161.pdf
 
015 (2019-10-10) Misbehaviour Prediction for Autonomous Driving Systems
    https://arxiv.xilesou.top/pdf/1910.04443.pdf
 
016 (2019-10-9) Adversarial Learning of Deepfakes in Accounting
    https://arxiv.xilesou.top/pdf/1910.03810.pdf
 
017 (2019-09-12) Perceptual Image Anomaly Detection
    https://arxiv.xilesou.top/pdf/1909.05904.pdf
 
018 (2019-08-27) Self-Supervised Representation Learning viaNeighborhood-Relational Encoding
    https://arxiv.xilesou.top/pdf/1908.10455.pdf
 
019 (2019-08-10) Transcriptional Response of SK-N-AS Cells to Methamidophos
    https://arxiv.xilesou.top/pdf/1908.03841.pdf
 
020 (2019-09-3) Februus  InputPurification Defence Against Trojan Attacks on Deep Neural Network Systems
    https://arxiv.xilesou.top/pdf/1908.03369.pdf
 
021 (2019-08-8) What goes around comes around  Cycle-Consistency-based Short-Term MotionPrediction for Anomaly Detection using Generative Adversarial Networks
    https://arxiv.xilesou.top/pdf/1908.03055.pdf
 


022 (2019-08-2) Detection of Accounting Anomalies in the Latent Space usingAdversarial Autoencoder Neural Networks
    https://arxiv.xilesou.top/pdf/1908.00734.pdf
 
023 (2019-09-3) Q-MIND  DefeatingStealthy DoS Attacks in SDN with a Machine-learning based Defense Framework
    https://arxiv.xilesou.top/pdf/1907.11887.pdf
 
024 (2019-10-8) Real-time Evasion Attacks with Physical Constraints on DeepLearning-based Anomaly Detectors in Industrial Control Systems
    https://arxiv.xilesou.top/pdf/1907.07487.pdf
 
025 (2019-07-12) AMAD  AdversarialMultiscale Anomaly Detection on High-Dimensional and Time-Evolving CategoricalData
    https://arxiv.xilesou.top/pdf/1907.06582.pdf
 
026 (2019-06-27) A Survey on GANs for Anomaly Detection
    https://arxiv.xilesou.top/pdf/1906.11632.pdf
 
027 (2019-06-15) Physical Integrity Attack Detection of Surveillance Camerawith Deep Learning Based Video Frame Interpolation
    https://arxiv.xilesou.top/pdf/1906.06475.pdf
 
028 (2019-07-8) GAN-based Multiple Adjacent Brain MRI Slice Reconstructionfor Unsupervised Alzheimer's Disease Diagnosis
    https://arxiv.xilesou.top/pdf/1906.06114.pdf
 
029 (2019-06-3) Generative Adversarial Networks for Distributed IntrusionDetection in the Internet of Things
    https://arxiv.xilesou.top/pdf/1906.00567.pdf
 
030 (2019-11-20) Unsupervised Learning of Anomaly Detection fromContaminated Image Data using Simultaneous Encoder Training
    https://arxiv.xilesou.top/pdf/1905.11034.pdf
 
031 (2019-10-18) Adversarially-trained autoencoders for robust unsupervisednew physics searches
    https://arxiv.xilesou.top/pdf/1905.10384.pdf
 
032 (2019-05-19) Spatio-Temporal Adversarial Learning for Detecting UnseenFalls
    https://arxiv.xilesou.top/pdf/1905.07817.pdf
 
033 (2019-05-20) Finding Rats in Cats Detecting Stealthy Attacks using Group Anomaly Detection
    https://arxiv.xilesou.top/pdf/1905.07273.pdf
 
034 (2019-04-25) End-to-End Adversarial Learning for Intrusion Detection inComputer Networks
    https://arxiv.xilesou.top/pdf/1904.11577.pdf
 
035 (2019-04-24) GAN Augmented Text Anomaly Detection with Sequences of DeepStatistics
    https://arxiv.xilesou.top/pdf/1904.11094.pdf
 
036 (2019-04-23) A Comparison Study of Credit Card Fraud Detection  Supervised versus Unsupervised
    https://arxiv.xilesou.top/pdf/1904.10604.pdf
 
037 (2019-09-24) Trick or Heat Manipulating Critical Temperature-Based Control Systems UsingRectification Attacks
    https://arxiv.xilesou.top/pdf/1904.07110.pdf
 
038 (2019-12-2) Adversarial Learning in Statistical Classification  A Comprehensive Review of Defenses AgainstAttacks
    https://arxiv.xilesou.top/pdf/1904.06292.pdf
 
039 (2019-04-11) (Martingale) Optimal Transport And Anomaly Detection WithNeural Networks  A Primal-dual Algorithm
    https://arxiv.xilesou.top/pdf/1904.04546.pdf
 

040 (2019-07-24) Efficient GAN-based method for cyber-intrusion detection
    https://arxiv.xilesou.top/pdf/1904.02426.pdf
 
041 (2019-04-2) Fence GAN  TowardsBetter Anomaly Detection
    https://arxiv.xilesou.top/pdf/1904.01209.pdf
 
042 (2019-03-27) Fundamental Limits of Covert Packet Insertion
    https://arxiv.xilesou.top/pdf/1903.11640.pdf
 
043 (2019-05-20) Deep Generative Design Integration of Topology Optimization and Generative Models
    https://arxiv.xilesou.top/pdf/1903.01548.pdf
 
044 (2019-11-14) adVAE  Aself-adversarial variational autoencoder with Gaussian anomaly prior knowledgefor anomaly detection
    https://arxiv.xilesou.top/pdf/1903.00904.pdf
 
045 (2019-07-14) Secure Distributed Dynamic State Estimation in Wide-AreaSmart Grids
    https://arxiv.xilesou.top/pdf/1902.07288.pdf
 
046 (2019-02-19) Anomaly Detection with Adversarial Dual Autoencoders
    https://arxiv.xilesou.top/pdf/1902.06924.pdf
 
047 (2019-05-9) The Odds are Odd  AStatistical Test for Detecting Adversarial Examples
    https://arxiv.xilesou.top/pdf/1902.04818.pdf
 
048 (2019-11-6) BIVA  A Very DeepHierarchy of Latent Variables for Generative Modeling
    https://arxiv.xilesou.top/pdf/1902.02102.pdf
 
049 (2019-01-28) Heartbeat Anomaly Detection using Adversarial Oversampling
    https://arxiv.xilesou.top/pdf/1901.09972.pdf
 
050 (2019-01-25) Skip-GANomaly  SkipConnected and Adversarially Trained Encoder-Decoder Anomaly Detection
    https://arxiv.xilesou.top/pdf/1901.08954.pdf
 
051 (2019-05-27) Maximum Entropy Generators for Energy-Based Models
    https://arxiv.xilesou.top/pdf/1901.08508.pdf
 
052 (2019-01-10) Adversarial Pseudo Healthy Synthesis Needs PathologyFactorization
    https://arxiv.xilesou.top/pdf/1901.07295.pdf
 
053 (2019-01-18) Robust Anomaly Detection in Images using AdversarialAutoencoders
    https://arxiv.xilesou.top/pdf/1901.06355.pdf
 
054 (2019-01-15) MAD-GAN  MultivariateAnomaly Detection for Time Series Data with Generative Adversarial Networks
    https://arxiv.xilesou.top/pdf/1901.04997.pdf
 
055 (2019-12-4) Event Generation and Statistical Sampling for Physics withDeep Generative Models and a Density Information Buffer
    https://arxiv.xilesou.top/pdf/1901.00875.pdf
 
056 (2018-12-11) Anomaly Generation using Generative Adversarial Networks inHost Based Intrusion Detection
    https://arxiv.xilesou.top/pdf/1812.04697.pdf
 
057 (2018-12-11) Anomaly detection with Wasserstein GAN
    https://arxiv.xilesou.top/pdf/1812.02463.pdf
 
058 (2018-12-5) Adversarially Learned Anomaly Detection
    https://arxiv.xilesou.top/pdf/1812.02288.pdf
 
059 (2018-11-11) Adversarial Learning-Based On-Line Anomaly Monitoring forAssured Autonomy
    https://arxiv.xilesou.top/pdf/1811.04539.pdf
 
060 (2018-10-19) Subset Scanning Over Neural Network Activations
    https://arxiv.xilesou.top/pdf/1810.08676.pdf
 
061 (2018-10-11) MDGAN  BoostingAnomaly Detection Using \\Multi-Discriminator Generative Adversarial Networks
    https://arxiv.xilesou.top/pdf/1810.05221.pdf
 
062 (2019-04-30) Prospect Theoretic Approach for Data Integrity in IoTNetworks under Manipulation Attacks
    https://arxiv.xilesou.top/pdf/1809.07928.pdf
 
063 (2019-01-15) Anomaly Detection with Generative Adversarial Networks forMultivariate Time Series
    https://arxiv.xilesou.top/pdf/1809.04758.pdf
 
064 (2018-09-28) Layerwise Perturbation-Based Adversarial Training for HardDrive Health Degree Prediction
    https://arxiv.xilesou.top/pdf/1809.04188.pdf
 
065 (2018-09-7) Coupled IGMM-GANs for deep multimodal anomaly detection inhuman mobility data
    https://arxiv.xilesou.top/pdf/1809.02728.pdf
 
066 (2019-08-2) Detection and Mitigation of Attacks on TransportationNetworks as a Multi-Stage Security Game
    https://arxiv.xilesou.top/pdf/1808.08349.pdf
 
067 (2018-08-23) DOPING  GenerativeData Augmentation for Unsupervised Anomaly Detection with GAN
    https://arxiv.xilesou.top/pdf/1808.07632.pdf
 
068 (2018-08-1) Anomaly Detection via Minimum Likelihood GenerativeAdversarial Networks
    https://arxiv.xilesou.top/pdf/1808.00200.pdf
 
069 (2018-07-22) SAIFE  UnsupervisedWireless Spectrum Anomaly Detection with Interpretable Features
    https://arxiv.xilesou.top/pdf/1807.08316.pdf
 
070 (2018-06-27) Adversarial Distillation of Bayesian Neural NetworkPosteriors
    https://arxiv.xilesou.top/pdf/1806.10317.pdf
 
071 (2019-03-25) Learning Neural Random Fields with Inclusive AuxiliaryGenerators
    https://arxiv.xilesou.top/pdf/1806.00271.pdf
 
072 (2018-07-17) AVID  AdversarialVisual Irregularity Detection
    https://arxiv.xilesou.top/pdf/1805.09521.pdf
 
073 (2018-11-13) GANomaly Semi-Supervised Anomaly Detection via Adversarial Training
    https://arxiv.xilesou.top/pdf/1805.06725.pdf
 
074 (2018-05-5) Population Anomaly Detection through Deep Gaussianization
    https://arxiv.xilesou.top/pdf/1805.02123.pdf
 
075 (2018-04-13) Group Anomaly Detection using Deep Generative Models
    https://arxiv.xilesou.top/pdf/1804.04876.pdf
 
076 (2018-04-13) Adversarial Clustering A Grid Based Clustering Algorithm Against Active Adversaries
    https://arxiv.xilesou.top/pdf/1804.04780.pdf
 
077 (2018-04-12) Deep Autoencoding Models for Unsupervised AnomalySegmentation in Brain MR Images
    https://arxiv.xilesou.top/pdf/1804.04488.pdf
 
078 (2018-04-3) Correlated discrete data generation using adversarialtraining
    https://arxiv.xilesou.top/pdf/1804.00925.pdf
 
079 (2018-03-17) A Multi-perspective Approach To Anomaly Detection ForSelf-aware Embodied Agents
    https://arxiv.xilesou.top/pdf/1803.06579.pdf
 
080 (2018-04-9) CIoTA  CollaborativeIoT Anomaly Detection via Blockchain
    https://arxiv.xilesou.top/pdf/1803.03807.pdf
 
081 (2018-05-24) Adversarially Learned One-Class Classifier for NoveltyDetection
    https://arxiv.xilesou.top/pdf/1802.09088.pdf
 
082 (2019-05-1) Efficient GAN-Based Anomaly Detection
    https://arxiv.xilesou.top/pdf/1802.06222.pdf
 



083 (2018-02-13) Satellite Image Forgery Detection and Localization UsingGAN and One-Class Classifier
    https://arxiv.xilesou.top/pdf/1802.04881.pdf
 
084 (2018-02-8) Detection of Adversarial Training Examples in PoisoningAttacks through Anomaly Detection
    https://arxiv.xilesou.top/pdf/1802.03041.pdf
 
085 (2018-01-5) Shielding Google's language toxicity model againstadversarial attacks
    https://arxiv.xilesou.top/pdf/1801.01828.pdf
 
086 (2018-06-27) When Not to Classify Anomaly Detection of Attacks (ADA) on DNN Classifiers at Test Time
    https://arxiv.xilesou.top/pdf/1712.06646.pdf
 
087 (2018-04-24) Bayesian Hypernetworks
    https://arxiv.xilesou.top/pdf/1710.04759.pdf
 
088 (2017-09-15) To Go or Not To Go  ANear Unsupervised Learning Approach For Robot Navigation
    https://arxiv.xilesou.top/pdf/1709.05439.pdf
 
089 (2017-04-5) Counter-RAPTOR Safeguarding Tor Against Active Routing Attacks
    https://arxiv.xilesou.top/pdf/1704.00843.pdf
 
090 (2017-03-17) Unsupervised Anomaly Detection with Generative AdversarialNetworks to Guide Marker Discovery
    https://arxiv.xilesou.top/pdf/1703.05921.pdf

本文分享自微信公众号 - 机器学习与生成对抗网络(AI_bryant8)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!