为 aiohttp 爬虫注入灵魂

久未见 提交于 2020-12-04 13:23:52

为 aiohttp 爬虫注入灵魂

为 aiohttp 爬虫注入灵魂

摄影:产品经理
与产品经理在苏州的小生活
听说过异步爬虫的同学,应该或多或少听说过aiohttp这个库。它通过 Python 自带的async/await实现了异步爬虫。

使用 aiohttp,我们可以通过 requests 的api写出并发量匹敌 Scrapy 的爬虫。

我们在 aiohttp 的官方文档上面,可以看到它给出了一个代码示例,如下图所示:
为 aiohttp 爬虫注入灵魂

我们现在稍稍修改一下,来看看这样写爬虫,运行效率如何。

修改以后的代码如下:


import asyncio
import aiohttp

template = 'http://exercise.kingname.info/exercise_middleware_ip/{page}'

async def get(session, page):
    url = template.format(page=page)
    resp = await session.get(url)
    print(await resp.text(encoding='utf-8'))

async def main():
    async with aiohttp.ClientSession() as session:
        for page in range(100):
            await get(session, page)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

这段代码访问我的爬虫练习站100次,获取100页的内容。

大家可以通过下面这个视频看看它的运行效率:
为 aiohttp 爬虫注入灵魂

可以说,目前这个运行速度,跟 requests 写的单线程爬虫几乎没有区别,代码还多了那么多。

那么,应该如何正确释放 aiohttp 的超能力呢?

我们现在把代码做一下修改:


import asyncio
import aiohttp

template = 'http://exercise.kingname.info/exercise_middleware_ip/{page}'

async def get(session, queue):
    while True:
        try:
            page = queue.get_nowait()
        except asyncio.QueueEmpty:
            return
        url = template.format(page=page)
        resp = await session.get(url)
        print(await resp.text(encoding='utf-8'))

async def main():
    async with aiohttp.ClientSession() as session:
        queue = asyncio.Queue()
        for page in range(1000):
            queue.put_nowait(page)
        tasks = []
        for _ in range(100):
            task = get(session, queue)
            tasks.append(task)
        await asyncio.wait(tasks)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

在修改以后的代码里面,我让这个爬虫爬1000页的内容,我们来看看下面这个视频。
为 aiohttp 爬虫注入灵魂

可以看到,目前这个速度已经可以跟 Scrapy 比一比了。并且大家需要知道,这个爬虫只有1个进程1个线程,它是通过异步的方式达到这个速度的。

那么,修改以后的代码,为什么速度能快那么多呢?

关键的代码,就在:


tasks = []
for _ in range(100):
    task = get(session, queue)
    tasks.append(task)
await asyncio.wait(tasks)

在慢速版本里面,我们只有1个协程在运行。而在现在这个快速版本里面,我们创建了100个协程,并把它提交给asyncio.wait来统一调度。asyncio.wait会在所有协程全部结束的时候才返回。

我们把1000个 URL 放在asyncio.Queue生成的一个异步队列里面,每一个协程都通过 while True 不停从这个异步队列里面取 URL 并进行访问,直到异步队列为空,退出。

当程序运行时,Python 会自动调度这100个协程,当一个协程在等待网络 IO 返回时,切换到第二个协程并发起请求,在这个协程等待返回时,继续切换到第三个协程并发起请求……。程序充分利用了网络 IO 的等待时间,从而大大提高了运行速度。

最后,感谢实习生小河给出的这种加速方案。

为 aiohttp 爬虫注入灵魂

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!