Exact value of a floating-point number as a rational

帅比萌擦擦* 提交于 2020-12-01 11:39:11

问题


I'm looking for a method to convert the exact value of a floating-point number to a rational quotient of two integers, i.e. a / b, where b is not larger than a specified maximum denominator b_max. If satisfying the condition b <= b_max is impossible, then the result falls back to the best approximation which still satisfies the condition.

Hold on. There are a lot of questions/answers here about the best rational approximation of a truncated real number which is represented as a floating-point number. However I'm interested in the exact value of a floating-point number, which is itself a rational number with a different representation. More specifically, the mathematical set of floating-point numbers is a subset of rational numbers. In case of IEEE 754 binary floating-point standard it is a subset of dyadic rationals. Anyway, any floating-point number can be converted to a rational quotient of two finite precision integers as a / b.

So, for example assuming IEEE 754 single-precision binary floating-point format, the rational equivalent of float f = 1.0f / 3.0f is not 1 / 3, but 11184811 / 33554432. This is the exact value of f, which is a number from the mathematical set of IEEE 754 single-precision binary floating-point numbers.

Based on my experience, traversing (by binary search of) the Stern-Brocot tree is not useful here, since that is more suitable for approximating the value of a floating-point number, when it is interpreted as a truncated real instead of an exact rational.

Possibly, continued fractions are the way to go.

The another problem here is integer overflow. Think about that we want to represent the rational as the quotient of two int32_t, where the maximum denominator b_max = INT32_MAX. We cannot rely on a stopping criterion like b > b_max. So the algorithm must never overflow, or it must detect overflow.

What I found so far is an algorithm from Rosetta Code, which is based on continued fractions, but its source mentions it is "still not quite complete". Some basic tests gave good results, but I cannot confirm its overall correctness and I think it can easily overflow.

// https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdint.h>

/* f : number to convert.
 * num, denom: returned parts of the rational.
 * md: max denominator value.  Note that machine floating point number
 *     has a finite resolution (10e-16 ish for 64 bit double), so specifying
 *     a "best match with minimal error" is often wrong, because one can
 *     always just retrieve the significand and return that divided by 
 *     2**52, which is in a sense accurate, but generally not very useful:
 *     1.0/7.0 would be "2573485501354569/18014398509481984", for example.
 */
void rat_approx(double f, int64_t md, int64_t *num, int64_t *denom)
{
    /*  a: continued fraction coefficients. */
    int64_t a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
    int64_t x, d, n = 1;
    int i, neg = 0;

    if (md <= 1) { *denom = 1; *num = (int64_t) f; return; }

    if (f < 0) { neg = 1; f = -f; }

    while (f != floor(f)) { n <<= 1; f *= 2; }
    d = f;

    /* continued fraction and check denominator each step */
    for (i = 0; i < 64; i++) {
        a = n ? d / n : 0;
        if (i && !a) break;

        x = d; d = n; n = x % n;

        x = a;
        if (k[1] * a + k[0] >= md) {
            x = (md - k[0]) / k[1];
            if (x * 2 >= a || k[1] >= md)
                i = 65;
            else
                break;
        }

        h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
        k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
    }
    *denom = k[1];
    *num = neg ? -h[1] : h[1];
}

回答1:


All finite double are rational numbers as OP well stated..

Use frexp() to break the number into its fraction and exponent. The end result still needs to use double to represent whole number values due to range requirements. Some numbers are too small, (x smaller than 1.0/(2.0,DBL_MAX_EXP)) and infinity, not-a-number are issues.

The frexp functions break a floating-point number into a normalized fraction and an integral power of 2. ... interval [1/2, 1) or zero ...
C11 §7.12.6.4 2/3

#include <math.h>
#include <float.h>

_Static_assert(FLT_RADIX == 2, "TBD code for non-binary FP");

// Return error flag
int split(double x, double *numerator, double *denominator) {
  if (!isfinite(x)) {
    *numerator = *denominator = 0.0;
    if (x > 0.0) *numerator = 1.0;
    if (x < 0.0) *numerator = -1.0;
    return 1;
  }
  int bdigits = DBL_MANT_DIG;
  int expo;
  *denominator = 1.0;
  *numerator = frexp(x, &expo) * pow(2.0, bdigits);
  expo -= bdigits;
  if (expo > 0) {
    *numerator *= pow(2.0, expo);
  }
  else if (expo < 0) {
    expo = -expo;
    if (expo >= DBL_MAX_EXP-1) {
      *numerator /= pow(2.0, expo - (DBL_MAX_EXP-1));
      *denominator *= pow(2.0, DBL_MAX_EXP-1);
      return fabs(*numerator) < 1.0;
    } else {
      *denominator *= pow(2.0, expo);
    }
  }

  while (*numerator && fmod(*numerator,2) == 0 && fmod(*denominator,2) == 0) {
    *numerator /= 2.0;
    *denominator /= 2.0;
  }
  return 0;
}

void split_test(double x) {
  double numerator, denominator;
  int err = split(x, &numerator, &denominator);
  printf("e:%d x:%24.17g n:%24.17g d:%24.17g q:%24.17g\n", 
      err, x, numerator, denominator, numerator/ denominator);
}

int main(void) {
  volatile float third = 1.0f/3.0f;
  split_test(third);
  split_test(0.0);
  split_test(0.5);
  split_test(1.0);
  split_test(2.0);
  split_test(1.0/7);
  split_test(DBL_TRUE_MIN);
  split_test(DBL_MIN);
  split_test(DBL_MAX);
  return 0;
}

Output

e:0 x:      0.3333333432674408 n:                11184811 d:                33554432 q:      0.3333333432674408
e:0 x:                       0 n:                       0 d:        9007199254740992 q:                       0
e:0 x:                       1 n:                       1 d:                       1 q:                       1
e:0 x:                     0.5 n:                       1 d:                       2 q:                     0.5
e:0 x:                       1 n:                       1 d:                       1 q:                       1
e:0 x:                       2 n:                       2 d:                       1 q:                       2
e:0 x:     0.14285714285714285 n:        2573485501354569 d:       18014398509481984 q:     0.14285714285714285
e:1 x: 4.9406564584124654e-324 n:  4.4408920985006262e-16 d: 8.9884656743115795e+307 q: 4.9406564584124654e-324
e:0 x: 2.2250738585072014e-308 n:                       2 d: 8.9884656743115795e+307 q: 2.2250738585072014e-308
e:0 x: 1.7976931348623157e+308 n: 1.7976931348623157e+308 d:                       1 q: 1.7976931348623157e+308

Leave the b_max consideration for later.


More expedient code is possible with replacing pow(2.0, expo) with ldexp(1, expo) @gammatester or exp2(expo) @Bob__

while (*numerator && fmod(*numerator,2) == 0 && fmod(*denominator,2) == 0) could also use some performance improvements. But first, let us get the functionality as needed.



来源:https://stackoverflow.com/questions/51142275/exact-value-of-a-floating-point-number-as-a-rational

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!