Sci-kit learn how to print labels for confusion matrix?

99封情书 提交于 2020-12-01 09:21:37

问题


So I'm using sci-kit learn to classify some data. I have 13 different class values/categorizes to classify the data to. Now I have been able to use cross validation and print the confusion matrix. However, it only shows the TP and FP etc without the classlabels, so I don't know which class is what. Below is my code and my output:

def classify_data(df, feature_cols, file):
    nbr_folds = 5
    RANDOM_STATE = 0
    attributes = df.loc[:, feature_cols]  # Also known as x
    class_label = df['task']  # Class label, also known as y.
    file.write("\nFeatures used: ")
    for feature in feature_cols:
        file.write(feature + ",")
    print("Features used", feature_cols)

    sampler = RandomOverSampler(random_state=RANDOM_STATE)
    print("RandomForest")
    file.write("\nRandomForest")
    rfc = RandomForestClassifier(max_depth=2, random_state=RANDOM_STATE)
    pipeline = make_pipeline(sampler, rfc)
    class_label_predicted = cross_val_predict(pipeline, attributes, class_label, cv=nbr_folds)
    conf_mat = confusion_matrix(class_label, class_label_predicted)
    print(conf_mat)
    accuracy = accuracy_score(class_label, class_label_predicted)
    print("Rows classified: " + str(len(class_label_predicted)))
    print("Accuracy: {0:.3f}%\n".format(accuracy * 100))
    file.write("\nClassifier settings:" + str(pipeline) + "\n")
    file.write("\nRows classified: " + str(len(class_label_predicted)))
    file.write("\nAccuracy: {0:.3f}%\n".format(accuracy * 100))
    file.writelines('\t'.join(str(j) for j in i) + '\n' for i in conf_mat)

#Output
Rows classified: 23504
Accuracy: 17.925%
0   372 46  88  5   73  0   536 44  317 0   200 127
0   501 29  85  0   136 0   655 9   154 0   172 67
0   97  141 78  1   56  0   336 37  429 0   435 198
0   135 74  416 5   37  0   507 19  323 0   128 164
0   247 72  145 12  64  0   424 21  296 0   304 223
0   190 41  36  0   178 0   984 29  196 0   111 43
0   218 13  71  7   52  0   917 139 177 0   111 103
0   215 30  84  3   71  0   1175    11  55  0   102 62
0   257 55  156 1   13  0   322 184 463 0   197 160
0   188 36  104 2   34  0   313 99  827 0   69  136
0   281 80  111 22  16  0   494 19  261 0   313 211
0   207 66  87  18  58  0   489 23  157 0   464 239
0   113 114 44  6   51  0   389 30  408 0   338 315

As you can see, you can't really know what column is what and the print is also "misaligned" so it's difficult to understand.

Is there a way to print the labels as well?


回答1:


From the doc, it seems that there is no such option to print the rows and column labels of the confusion matrix. However, you can specify the label order using argument labels=...

Example:

from sklearn.metrics import confusion_matrix

y_true = ['yes','yes','yes','no','no','no']
y_pred = ['yes','no','no','no','no','no']
print(confusion_matrix(y_true, y_pred))
# Output:
# [[3 0]
#  [2 1]]
print(confusion_matrix(y_true, y_pred, labels=['yes', 'no']))
# Output:
# [[1 2]
#  [0 3]]

If you want to print the confusion matrix with labels, you may try pandas and set the index and columns of the DataFrame.

import pandas as pd
cmtx = pd.DataFrame(
    confusion_matrix(y_true, y_pred, labels=['yes', 'no']), 
    index=['true:yes', 'true:no'], 
    columns=['pred:yes', 'pred:no']
)
print(cmtx)
# Output:
#           pred:yes  pred:no
# true:yes         1        2
# true:no          0        3

Or

unique_label = np.unique([y_true, y_pred])
cmtx = pd.DataFrame(
    confusion_matrix(y_true, y_pred, labels=unique_label), 
    index=['true:{:}'.format(x) for x in unique_label], 
    columns=['pred:{:}'.format(x) for x in unique_label]
)
print(cmtx)
# Output:
#           pred:no  pred:yes
# true:no         3         0
# true:yes        2         1



回答2:


It is important to ensure that the way you label your confusion matrix rows and columns corresponds exactly to the way sklearn has coded the classes. The true order of the labels can be revealed using the .classes_ attribute of the classifier. You can use the code below to prepare a confusion matrix data frame.

labels = rfc.classes_
conf_df = pd.DataFrame(confusion_matrix(class_label, class_label_predicted, columns=labels, index=labels))
conf_df.index.name = 'True labels'

The second thing to note is that your classifier is not predicting labels well. The number of correctly predicted labels is shown on the main diagonal of the confusion matrix. You have non-zero values accross the matrix and some classes have not been predicted at all - the columns that are all zero. It might be a good idea to run the classifier with its default parameters and then try to optimise them.




回答3:


Since confusion matrix is just a numpy matrix, it does not contain any column information. What you can do is convert your matrix into a dataframe and then print this dataframe.

import pandas as pd
import numpy as np

def cm2df(cm, labels):
    df = pd.DataFrame()
    # rows
    for i, row_label in enumerate(labels):
        rowdata={}
        # columns
        for j, col_label in enumerate(labels): 
            rowdata[col_label]=cm[i,j]
        df = df.append(pd.DataFrame.from_dict({row_label:rowdata}, orient='index'))
    return df[labels]

cm = np.arange(9).reshape((3, 3))
df = cm2df(cm, ["a", "b", "c"])
print(df)

Code snippet is from https://gist.github.com/nickynicolson/202fe765c99af49acb20ea9f77b6255e

Output:

   a  b  c
a  0  1  2
b  3  4  5
c  6  7  8



回答4:


It appears your data has 13 different classes, which is why your confusion matrix has 13 rows and columns. Furthermore, your classes aren't labeled in any way, just integers from what I can see.

If this isn't the case, and your training data has actual labels, you can pass a list of unique labels to confusion_matrix

conf_mat = confusion_matrix(class_label, class_label_predicted, df['task'].unique())



回答5:


Another better way of doing this is using crosstab function in pandas.

pd.crosstab(y_true, y_pred, rownames=['True'], colnames=['Predicted'], margins=True).

or

pd.crosstab(le.inverse_transform(y_true), le.inverse_transform(y_pred),rownames=['True'], colnames=['Predicted'], margins=True)



来源:https://stackoverflow.com/questions/50325786/sci-kit-learn-how-to-print-labels-for-confusion-matrix

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!