问题
I have a model structured as follows, and I would like to extract the predicted values while ignoring the random effect. As specified in ?predict.gam
and here, I am using the exclude
argument, but I am getting an error. Where is my mistake?
dt <- data.frame(n1 = runif(500, min=0, max=1),
n2 = rep(1:10,50),
n3 = runif(500, min=0, max=2),
n4 = runif(500, min=0, max=2),
c1 = factor(rep(c("X","Y"),250)),
c2 = factor(rep(c("a", "b", "c", "d", "e"), 100)))
mod = gam(n1 ~
s(n2, n3, n4, by=c1) +
s(c2, bs="re"),
data=dt)
newd=data.table(expand.grid(n1=seq(min(dt$n1), max(dt$n1), 0.5),
n2=1:10,
n3=seq(min(dt$n3), max(dt$n3), 0.5),
n4=seq(min(dt$n4), max(dt$n4), 0.5),
c1=c("X", "Y")))
newd$pred <- predict.gam(mod, newd, exclude = "s(c2)")
In predict.gam(mod, newd, exclude = "s(c2)"): not all required variables have been supplied in newdata!
回答1:
exclude
does not work in the way as you assumed. You still need to provide all variables in your newd
for predict.gam
. See my this answer for what is behind predict.gam
.
Here is what you need to do:
## pad newd with an arbitrary value for variable c2
newd$c2 <- "a"
## termwise prediction
pt <- predict.gam(mod, newd, type = "terms", exclude = "s(c2)")
## linear predictor without random effect
lp_no_c2 <- rowSums(pt) + attr(pt, "constant")
来源:https://stackoverflow.com/questions/54411851/mgcv-how-to-use-exclude-argument-in-predict-gam