Spring Cloud 源码学习之 Hystrix 熔断器

南笙酒味 提交于 2020-11-23 08:24:29

文中源码基于 Spring Cloud Finchley.SR1、Spring Boot 2.0.6.RELEASE.

本文学习了Hystrix熔断器的原理、配置和源码,包含滑动窗口、状态变化等。

简介

circuit-breaker: circuit表示电路,大家译为熔断器非常精准。

回想起小时候,家里保险丝突然被烧断,需 手工更换一根新的保险丝;后来,保险丝被取代,电流过大时会跳闸,闸拉上去后立马恢复供电;等到上大学时,只要打开功率高一点的电吹风,砰的一声就断电,但过10分钟就自动来电。在电流过大时,通过熔断机制以保护电路和家电。

Hystrix 属于上面的第三种,一种自动恢复的智能熔断器,区别在于它保护的是系统,且判断 “电流过大” 的方式是:不断收集请求指标信息(sucess、failure、timeout、rejection),当达到设定熔断条件时(默认是请求失败率达到50%)进行熔断。

在 Spring Cloud 源码学习之 Hystrix Metrics 收集 一文中,学习了 Metrics 收集,这是上文的图。

Hystrix Command 执行过程中,各种情况都以事件形式发出,再封装成特定的数据结构,最后汇入到事件流中(HystrixEventStream)。事件流提供了 observe() 方法,摇身一变,事件流把自己变成了一个数据源(各小溪汇入成河,消费者从河里取水),其他消费者可以从这里获取数据,而 circuit-breaker 就是消费者之一。

原理

在统计中,会使用一定数量的样本,并将样本进行分组,最后进行统计分析。

Hystrix 有点类似,例如:以秒为单位来统计请求的处理情况(成功请求数量、失败请求数、超时请求数、被拒绝的请求数),然后每次取最近10秒的数据来进行计算,如果失败率超过50%,就进行熔断,不再处理任何请求

这是Hystrix官网的一张图:

它演示了 Hystrix 滑动窗口 策略,假定以秒为单位来统计请求处理情况,上面每个格子代表1秒,格子中的数据就是1秒内各处理结果的请求数量,格子称为 Bucket(译为桶)。

若每次的决策都以10个Bucket的数据为依据,计算10个Bucket的请求处理情况,当失败率超过50%时就熔断。10个Bucket就是10秒,这个10秒就是一个 滑动窗口(Rolling window)

为什么叫滑动窗口?因为在没有熔断时,每当收集好一个新的Bucket后,就会丢弃掉最旧的一个Bucket。上图中的深色的(23 5 2 0)就是被丢弃的桶,这和拿着放大镜从左到右看书有点类似,视野永远是放大镜那一部分。

下面是官方完整的流程图,策略是:不断收集数据,达到条件就熔断;熔断后拒绝所有请求一段时间(sleepWindow);然后放一个请求过去,如果请求成功,则关闭熔断器,否则继续打开熔断器。

相关配置

默认配置都在HystrixCommandProperties类中。

先看两个metrics收集的配置。

  • metrics.rollingStats.timeInMilliseconds

表示滑动窗口的时间(the duration of the statistical rolling window),默认10000(10s),也是熔断器计算的基本单位。

  • metrics.rollingStats.numBuckets

滑动窗口的Bucket数量(the number of buckets the rolling statistical window is divided into),默认10. 通过timeInMilliseconds和numBuckets可以计算出每个Bucket的时长。

metrics.rollingStats.timeInMilliseconds % metrics.rollingStats.numBuckets 必须等于 0,否则将抛异常。

再看看熔断器的配置。

  • circuitBreaker.requestVolumeThreshold

滑动窗口触发熔断的最小请求数。如果值是20,但滑动窗口的时间内请求数只有19,那即使19个请求全部失败,也不会熔断,必须达到这个值才行,否则样本太少,没有意义。

  • circuitBreaker.sleepWindowInMilliseconds

这个和熔断器自动恢复有关,为了检测后端服务是否恢复,可以放一个请求过去试探一下。sleepWindow指的发生熔断后,必须隔sleepWindow这么长的时间,才能放请求过去试探下服务是否恢复。默认是5s

  • circuitBreaker.errorThresholdPercentage

错误率阈值,表示达到熔断的条件。比如默认的50%,当一个滑动窗口内,失败率达到50%时就会触发熔断。

源码学习

HystrixCircuitBreaker的创建

circuitBreaker是AbstractCommand的成员变量,AbstractCommand是HystrixCommand和HystrixObservableCommand的父类,因此每个command都有个circuitBreaker属性。

  
  
  1. abstract class AbstractCommand<R> implements HystrixInvokableInfo<R>, HystrixObservable<R> {

  2.    protected final HystrixCircuitBreaker circuitBreaker;

  3. }

在AbstractCommand构造器中初始化circuitBreaker。

  
  
  1. private static HystrixCircuitBreaker initCircuitBreaker(boolean enabled, HystrixCircuitBreaker fromConstructor, HystrixCommandKey commandKey...) {

  2.    // 如果启用了熔断器

  3.    if (enabled) {

  4.        // 若commandKey没有对应的CircuitBreaker,则创建

  5.        if (fromConstructor == null) {

  6.            return HystrixCircuitBreaker.Factory.getInstance(commandKey, groupKey, properties, metrics);

  7.        } else {

  8.            // 如果有则返回现有的

  9.            return fromConstructor;

  10.        }

  11.    } else {

  12.        return new NoOpCircuitBreaker();

  13.    }

  14. }

再看看 HystrixCircuitBreaker.Factory.getInstance(commandKey, groupKey, properties, metrics) 如何创建circuit-breakder?

circuitBreaker以commandKey为维度,每个commandKey都会有对应的circuitBreaker。

  
  
  1. public static HystrixCircuitBreaker getInstance(HystrixCommandKey key, HystrixCommandGroupKey group, HystrixCommandProperties properties, HystrixCommandMetrics metrics) {

  2.    // 如果有则返回现有的, key.name()即command的name作为检索条件

  3.    HystrixCircuitBreaker previouslyCached = circuitBreakersByCommand.get(key.name());

  4.    if (previouslyCached != null) {

  5.        return previouslyCached;

  6.    }

  7.    // 如果没有则创建并cache

  8.    HystrixCircuitBreaker cbForCommand = circuitBreakersByCommand.putIfAbsent(key.name(), new HystrixCircuitBreakerImpl(key, group, properties, metrics));

  9.    if (cbForCommand == null) {

  10.        return circuitBreakersByCommand.get(key.name());

  11.    } else {

  12.        return cbForCommand;

  13.    }

  14. }

如何订阅HystrixEventStream

本文最前面说到,HystrixEventStream提供了结构化的数据,提供了一个Observable对象,Hystrix只需要订阅它即可。

这HystrixCircuitBreaker接口实现类的构造器:

  
  
  1. protected HystrixCircuitBreakerImpl(HystrixCommandKey key, HystrixCommandGroupKey commandGroup, final HystrixCommandProperties properties, HystrixCommandMetrics metrics) {

  2.    this.properties = properties;

  3.    // 这是Command中的metrics对象,metrics对象也是commandKey维度的

  4.    this.metrics = metrics;

  5.    // !!!重点:订阅事件流

  6.    Subscription s = subscribeToStream();

  7.    activeSubscription.set(s);

  8. }

  9. // 订阅事件流, 前面打的比方: 小溪汇成的河, 各事件以结构化数据汇入了Stream中

  10. private Subscription subscribeToStream() {

  11.    // HealthCountsStream是重点,下面会分析

  12.    return metrics.getHealthCountsStream()

  13.            .observe()

  14.            // 利用数据统计的结果HealthCounts, 实现熔断器

  15.            .subscribe(new Subscriber<HealthCounts>() {

  16.                @Override

  17.                public void onCompleted() {}

  18.                @Override

  19.                public void onError(Throwable e) {}

  20.                @Override

  21.                public void onNext(HealthCounts hc) {

  22.                    // 检查是否达到最小请求数,默认20个; 未达到的话即使请求全部失败也不会熔断

  23.                    if (hc.getTotalRequests() < properties.circuitBreakerRequestVolumeThreshold().get()) {

  24.                        // 啥也不做

  25.                    } else {

  26.                        // 错误百分比未达到设定的阀值

  27.                        if (hc.getErrorPercentage() < properties.circuitBreakerErrorThresholdPercentage().get()) {

  28.                        } else {

  29.                            // 错误率过高, 进行熔断

  30.                            if (status.compareAndSet(Status.CLOSED, Status.OPEN)) {

  31.                                circuitOpened.set(System.currentTimeMillis());

  32.                            }

  33.                        }

  34.                    }

  35.                }

  36.            });

  37. }

HealthCounts 属性如下,表示一个滑动窗口内的统计数据。

  
  
  1. public static class HealthCounts {

  2.    // rolling window 中请求总数量

  3.    private final long totalCount;

  4.    // 错误请求数(failure + success + timeout + threadPoolRejected + semaphoreRejected)

  5.    private final long errorCount;

  6.    // 错误率

  7.    private final int errorPercentage;

  8. }

滑动窗口的实现

跟进下 metrics.getHealthCountsStream().observe(),那熔断器是如何进行数据统计的?

首先看下HystrixCommandMetrics的构造器,会初始化healthCountsStream这个健康统计数据流。

  
  
  1. private HealthCountsStream healthCountsStream;

  2. HystrixCommandMetrics(final HystrixCommandKey key, ...) {

  3.    // 又是以key为维度

  4.    healthCountsStream = HealthCountsStream.getInstance(key, properties);

  5. }

对于HealthCountsStream的部分注释如下,翻译过来不够准确,简单中英对照下:

  
  
  1. Maintains a stream of rolling health counts for a given Command.

  2. 它是一份流数据, 承载了指定Command的健康统计数据

  3. There is a rolling window abstraction on this stream.

  4. 基于这个stream, 抽象出了滑动窗口

  5. The HealthCounts object is calculated over a window of t1 milliseconds.  This window has b buckets.

  6. HealthCounts的数据是根据一个t1毫秒的滑动窗口计算得来,这个窗口有bBuckets

  7. Therefore, a new HealthCounts object is produced every t2 (=t1/b) milliseconds

  8. 因此, t2 (=t1/b)毫秒就会产生一个HealthCounts作为统计结果

HealthCountsStream.getInstance如下:

  
  
  1. public static HealthCountsStream getInstance(HystrixCommandKey commandKey, HystrixCommandProperties properties) {

  2.    // 每个Bucket的时间长度

  3.    final int healthCountBucketSizeInMs = properties.metricsHealthSnapshotIntervalInMilliseconds().get();

  4.     // 滑动窗口的时间/每个Bucket的时间长度=滑动窗口内Bucket的数量

  5.    final int numHealthCountBuckets = properties.metricsRollingStatisticalWindowInMilliseconds().get() / healthCountBucketSizeInMs;

  6.    return getInstance(commandKey, numHealthCountBuckets, healthCountBucketSizeInMs);

  7. }

  8. // 以Key为维度,每个Key有自己唯一的一个HealthCountsStream

  9. public static HealthCountsStream getInstance(HystrixCommandKey commandKey, int numBuckets, int bucketSizeInMs) {

  10.    HealthCountsStream initialStream = streams.get(commandKey.name());

  11.    if (initialStream != null) {

  12.        return initialStream;

  13.    } else {

  14.        final HealthCountsStream healthStream;

  15.        synchronized (HealthCountsStream.class) {

  16.            HealthCountsStream existingStream = streams.get(commandKey.name());

  17.            if (existingStream == null) {

  18.                // appendEventToBucket是一个Func2,负责将Hystrix各个事件转换成一个Bucket

  19.                HealthCountsStream newStream = new HealthCountsStream(commandKey, numBuckets, bucketSizeInMs,

  20.                        HystrixCommandMetrics.appendEventToBucket);

  21.                streams.putIfAbsent(commandKey.name(), newStream);

  22.                healthStream = newStream;

  23.            } else {

  24.                healthStream = existingStream;

  25.            }

  26.        }

  27.        healthStream.startCachingStreamValuesIfUnstarted();

  28.        return healthStream;

  29.    }

  30. }

HealthCountsStream有两个父类,HealthCountsStream extends BucketedRollingCounterStream extendsBucketedCounterStream,利用父类将stream的基础数据汇总成Bucket,再汇总成rolling window,最后得到统计结果HealthClounts.

下面按顺序看一下它和父类的调用情况:

首先是 BucketedCounterStream

  
  
  1. public abstract class BucketedCounterStream<Event extends HystrixEvent, Bucket, Output> {

  2.    ...

  3.    protected BucketedCounterStream(final HystrixEventStream<Event> inputEventStream, final int numBuckets, final int bucketSizeInMs,

  4.                                    final Func2<Bucket, Event, Bucket> appendRawEventToBucket) {

  5.        this.numBuckets = numBuckets;

  6.        // 将Hystrix事件汇总成Bucket的处理者, 是一个Func1

  7.        this.reduceBucketToSummary = new Func1<Observable<Event>, Observable<Bucket>>() {

  8.            // 传入Event类型的数据源,汇总成Bucket类型的数据

  9.            @Override

  10.            public Observable<Bucket> call(Observable<Event> eventBucket) {

  11.                ...

  12.            }

  13.        };

  14.        ...

  15.        this.bucketedStream = Observable.defer(new Func0<Observable<Bucket>>() {

  16.            @Override

  17.            public Observable<Bucket> call() {

  18.                // inputEventStream 就是一直提到的HystrixEventStream, 通过observe()来获取数据源

  19.                return inputEventStream

  20.                        .observe()

  21.                        // 利用窗口函数,收集一个Bucket时间内的数据

  22.                        .window(bucketSizeInMs, TimeUnit.MILLISECONDS)

  23.                        // 将数据汇总成一个Bucket

  24.                        .flatMap(reduceBucketToSummary)

  25.                        .startWith(emptyEventCountsToStart);      

  26.            }

  27.        });

  28.    }

  29. }

通过BucketedCounterStream,将数据汇总成了以Bucket为单位的stream. 然后,BucketedRollingCounterStream基于Bucket的stream,继续实现滑动窗口逻辑

  
  
  1. protected BucketedRollingCounterStream(HystrixEventStream<Event> stream, final int numBuckets, int bucketSizeInMs,

  2.                                       final Func2<Bucket, Event, Bucket> appendRawEventToBucket,

  3.                                       final Func2<Output, Bucket, Output> reduceBucket) {

  4.    super(stream, numBuckets, bucketSizeInMs, appendRawEventToBucket);

  5.    // Bucket汇总处理者

  6.    Func1<Observable<Bucket>, Observable<Output>> reduceWindowToSummary = new Func1<Observable<Bucket>, Observable<Output>>() {

  7.        @Override

  8.        public Observable<Output> call(Observable<Bucket> window) {

  9.            return window.scan(getEmptyOutputValue(), reduceBucket).skip(numBuckets);

  10.        }

  11.    };

  12.    // 基于父类BucketedCounterStream已经汇总的bucketedStream

  13.    this.sourceStream = bucketedStream  

  14.            // 将N个Bucket进行汇总

  15.            .window(numBuckets, 1)      

  16.            // 汇总成一个窗口

  17.            .flatMap(reduceWindowToSummary)

  18.            ...

  19.            .share()                      

  20.            .onBackpressureDrop();

  21. }

现在再回到熔断器的逻辑:

  
  
  1. private Subscription subscribeToStream() {

  2.    return metrics.getHealthCountsStream()

  3.            .observe()

  4.            .subscribe(new Subscriber<HealthCounts>() {

  5.                ...

  6.            }

metrics.getHealthCountsStream()拿到的是一个已经汇总成以 “rollingWindow” 为单位的统计数据,observe() 实际拿到的是BucketedRollingCounterStream的sourceStream。如下:

  
  
  1. public abstract class BucketedRollingCounterStream<...> {

  2.    private Observable<Output> sourceStream;

  3.    protected BucketedRollingCounterStream(...)

  4.        // sourceStream 已经是rollingWindow级别的统计数据

  5.        this.sourceStream = bucketedStream    

  6.                .window(numBuckets, 1)    

  7.                .flatMap(reduceWindowToSummary)...

  8.    }

  9.    @Override

  10.    public Observable<Output> observe() {

  11.        return sourceStream;

  12.    }

  13. }

熔断器就是利用最终的统计结果HealthCounts来判断是否进行熔断。

熔断器状态变化

熔断器有三种状态,如下:

  
  
  1. enum Status {

  2.    CLOSED, OPEN, HALF_OPEN;

  3. }

在Command的执行过程中,会调用HystrixCircuitBreaker的方法来更新状态。下面是几个重要的方法:

命令执行时,判断熔断器是否打开

Spring Cloud 源码学习之 Hystrix 工作原理 中有介绍 Hystrix 如何实现其防护机制。

  
  
  1. // 是否允许执行

  2. public boolean attemptExecution() {

  3.    // 熔断器配置了强制打开, 不允许执行命令

  4.    if (properties.circuitBreakerForceOpen().get()) {

  5.        return false;

  6.    }

  7.    // 熔断器配置了强制关闭, 允许执行

  8.    if (properties.circuitBreakerForceClosed().get()) {

  9.        return true;

  10.    }

  11.    // AtomicLong circuitOpened, -1是表示熔断器未打开

  12.    if (circuitOpened.get() == -1) {

  13.        return true;

  14.    } else {

  15.        // 熔断后,会拒绝所有命令一段时间(默认5s), 称为sleepWindow

  16.        if (isAfterSleepWindow()) {

  17.            // 过了sleepWindow后,将熔断器设置为"HALF_OPEN",允许第一个请求过去

  18.            if (status.compareAndSet(Status.OPEN, Status.HALF_OPEN)) {

  19.                return true;

  20.            } else {

  21.                return false;

  22.            }

  23.        } else {

  24.            return false;

  25.        }

  26.    }

  27. }

当Command成功执行结束时,会调用HystrixCircuitBreaker.markSuccess()来标记执行成功.

  
  
  1. public void markSuccess() {

  2.    // 如果是HALF_OPEN状态,则关闭熔断器

  3.    if (status.compareAndSet(Status.HALF_OPEN, Status.CLOSED)) {

  4.        // 重新开始统计metrics,抛弃所有原先的metrics信息

  5.        metrics.resetStream();

  6.        Subscription previousSubscription = activeSubscription.get();

  7.        if (previousSubscription != null) {

  8.            previousSubscription.unsubscribe();

  9.        }

  10.        Subscription newSubscription = subscribeToStream();

  11.        activeSubscription.set(newSubscription);

  12.        // circuitOpened设置为-1表示关闭熔断器

  13.        circuitOpened.set(-1L);

  14.    }

  15. }

当Command执行失败时, 如果熔断器属于HALF_OPEN状态,也就是熔断器刚过sleepWindow时间,尝试放一个请求过去,结果又失败了,于是马上打开熔断器,继续拒绝sleepWindow的时间。

  
  
  1. public void markNonSuccess() {

  2.    if (status.compareAndSet(Status.HALF_OPEN, Status.OPEN)) {

  3.        circuitOpened.set(System.currentTimeMillis());

  4.    }

  5. }

这是调用markNonSuccess()的地方,handleFallback是所有失败情况的处理者.

  
  
  1. final Func1<Throwable, Observable<R>> handleFallback = new Func1<Throwable, Observable<R>>() {

  2.    @Override

  3.    public Observable<R> call(Throwable t) {

  4.        circuitBreaker.markNonSuccess();

  5.        Exception e = getExceptionFromThrowable(t);

  6.        executionResult = executionResult.setExecutionException(e);

  7.        // 线程池拒绝

  8.        if (e instanceof RejectedExecutionException) {

  9.            return handleThreadPoolRejectionViaFallback(e);

  10.        // 超时

  11.        } else if (t instanceof HystrixTimeoutException) {

  12.            return handleTimeoutViaFallback();

  13.        // Bad Request    

  14.        } else if (t instanceof HystrixBadRequestException) {

  15.            return handleBadRequestByEmittingError(e);

  16.        } else {

  17.            if (e instanceof HystrixBadRequestException) {

  18.                eventNotifier.markEvent(HystrixEventType.BAD_REQUEST, commandKey);

  19.                return Observable.error(e);

  20.            }

  21.            return handleFailureViaFallback(e);

  22.        }

  23.    }

  24. };

小结

断断续续写了好几天才写完,写作不易。Circuit-Breaker的设计、实现都很有意思:

  • 滴水成河,收集每个命令的执行情况,汇总后通过滑动窗口,不断动态计算最新统计数据,基于统计数据来开启熔断器

  • 巧妙的利用RxJava的window()函数来汇总数据,先汇总为Bucket, N Bucket组成Rolling Window

  • 使用sleepWindow + 尝试机制,自动恢复 “供电”



本文分享自微信公众号 - IT牧场(itmuch_com)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!