Spring Data Elasticsearch

霸气de小男生 提交于 2020-11-21 04:10:22

Spring Data Elasticsearch

Elasticsearch提供的Java客户端有一些不太方便的地方:

  • 很多地方需要拼接Json字符串,在java中拼接字符串有多恐怖你应该懂的
  • 需要自己把对象序列化为json存储
  • 查询到结果也需要自己反序列化为对象

因此,这里就不讲解原生的Elasticsearch客户端API了。

而是学习Spring提供的套件:Spring Data Elasticsearch。

1.简介

Spring Data Elasticsearch是Spring Data项目下的一个子模块。

查看 Spring Data的官网:http://projects.spring.io/spring-data/

Spring Data的使命是为数据访问提供熟悉且一致的基于Spring的编程模型,同时仍保留底层数据存储的特殊特性。

它使得使用数据访问技术,关系数据库和非关系数据库,map-reduce框架和基于云的数据服务变得容易。这是一个总括项目,其中包含许多特定于给定数据库的子项目。这些令人兴奋的技术项目背后,是由许多公司和开发人员合作开发的。

Spring Data 的使命是给各种数据访问提供统一的编程接口,不管是关系型数据库(如MySQL),还是非关系数据库(如Redis),或者类似Elasticsearch这样的索引数据库。从而简化开发人员的代码,提高开发效率。

包含很多不同数据操作的模块:

Spring Data Elasticsearch的页面:https://projects.spring.io/spring-data-elasticsearch/

特征:

  • 支持Spring的基于@Configuration的java配置方式,或者XML配置方式
  • 提供了用于操作ES的便捷工具类**ElasticsearchTemplate**。包括实现文档到POJO之间的自动智能映射。
  • 利用Spring的数据转换服务实现的功能丰富的对象映射
  • 基于注解的元数据映射方式,而且可扩展以支持更多不同的数据格式
  • 根据持久层接口自动生成对应实现方法,无需人工编写基本操作代码(类似mybatis,根据接口自动得到实现)。当然,也支持人工定制查询

2.创建Demo工程

我们新建一个demo,学习Elasticsearch

pom依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>

	<groupId>com.leyou.demo</groupId>
	<artifactId>elasticsearch</artifactId>
	<version>0.0.1-SNAPSHOT</version>
	<packaging>jar</packaging>

	<name>elasticsearch</name>
	<description>Demo project for Spring Boot</description>

	<parent>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-parent</artifactId>
		<version>2.0.2.RELEASE</version>
		<relativePath/> <!-- lookup parent from repository -->
	</parent>

	<properties>
		<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
		<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
		<java.version>1.8</java.version>
	</properties>

	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
		</dependency>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-test</artifactId>
			<scope>test</scope>
		</dependency>
	</dependencies>

	<build>
		<plugins>
			<plugin>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-maven-plugin</artifactId>
			</plugin>
		</plugins>
	</build>
</project>

application.yml文件配置:

spring:
  data:
    elasticsearch:
      cluster-name: elasticsearch
      cluster-nodes: 192.168.56.101:9300

3.实体类及注解

首先我们准备好实体类:

public class Item {
    Long id;
    String title; //标题
    String category;// 分类
    String brand; // 品牌
    Double price; // 价格
    String images; // 图片地址
}

映射

Spring Data通过注解来声明字段的映射属性,有下面的三个注解:

  • @Document 作用在类,标记实体类为文档对象,一般有两个属性
    • indexName:对应索引库名称
    • type:对应在索引库中的类型
    • shards:分片数量,默认5
    • replicas:副本数量,默认1
  • @Id 作用在成员变量,标记一个字段作为id主键
  • @Field 作用在成员变量,标记为文档的字段,并指定字段映射属性:
    • type:字段类型,取值是枚举:FieldType
    • index:是否索引,布尔类型,默认是true
    • store:是否存储,布尔类型,默认是false
    • analyzer:分词器名称

示例:

@Document(indexName = "item",type = "docs", shards = 1, replicas = 0)
public class Item {
    @Id
    private Long id;
    
    @Field(type = FieldType.Text, analyzer = "ik_max_word")
    private String title; //标题
    
    @Field(type = FieldType.Keyword)
    private String category;// 分类
    
    @Field(type = FieldType.Keyword)
    private String brand; // 品牌
    
    @Field(type = FieldType.Double)
    private Double price; // 价格
    
    @Field(index = false, type = FieldType.Keyword)
    private String images; // 图片地址
}

4.Template索引操作

4.1.创建索引和映射

创建索引

ElasticsearchTemplate中提供了创建索引的API:

可以根据类的信息自动生成,也可以手动指定indexName和Settings

映射

映射相关的API:

可以根据类的字节码信息(注解配置)来生成映射,或者手动编写映射

我们这里采用类的字节码信息创建索引并映射:

@RunWith(SpringRunner.class)
@SpringBootTest(classes = ItcastElasticsearchApplication.class)
public class IndexTest {

    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;

    @Test
    public void testCreate(){
        // 创建索引,会根据Item类的@Document注解信息来创建
        elasticsearchTemplate.createIndex(Item.class);
        // 配置映射,会根据Item类中的id、Field等字段来自动完成映射
        elasticsearchTemplate.putMapping(Item.class);
    }
}

结果:

GET /item
{
  "item": {
    "aliases": {},
    "mappings": {
      "docs": {
        "properties": {
          "brand": {
            "type": "keyword"
          },
          "category": {
            "type": "keyword"
          },
          "images": {
            "type": "keyword",
            "index": false
          },
          "price": {
            "type": "double"
          },
          "title": {
            "type": "text",
            "analyzer": "ik_max_word"
          }
        }
      }
    },
    "settings": {
      "index": {
        "refresh_interval": "1s",
        "number_of_shards": "1",
        "provided_name": "item",
        "creation_date": "1525405022589",
        "store": {
          "type": "fs"
        },
        "number_of_replicas": "0",
        "uuid": "4sE9SAw3Sqq1aAPz5F6OEg",
        "version": {
          "created": "6020499"
        }
      }
    }
  }
}

4.2.删除索引

删除索引的API:

可以根据类名或索引名删除。

示例:

@Test
public void deleteIndex() {
    esTemplate.deleteIndex("heima");
}

结果:

5.Repository文档操作

Spring Data 的强大之处,就在于你不用写任何DAO处理,自动根据方法名或类的信息进行CRUD操作。只要你定义一个接口,然后继承Repository提供的一些子接口,就能具备各种基本的CRUD功能。

我们只需要定义接口,然后继承它就OK了。

public interface ItemRepository extends ElasticsearchRepository<Item,Long> {
}

来看下Repository的继承关系:

我们看到有一个ElasticsearchRepository接口:

5.1.新增文档

@Autowired
private ItemRepository itemRepository;

@Test
public void index() {
    Item item = new Item(1L, "小米手机7", " 手机",
                         "小米", 3499.00, "http://image.leyou.com/13123.jpg");
    itemRepository.save(item);
}

去页面查询看看:

GET /item/_search

结果:

{
  "took": 14,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "item",
        "_type": "docs",
        "_id": "1",
        "_score": 1,
        "_source": {
          "id": 1,
          "title": "小米手机7",
          "category": " 手机",
          "brand": "小米",
          "price": 3499,
          "images": "http://image.leyou.com/13123.jpg"
        }
      }
    ]
  }
}

5.2.批量新增

代码:

@Test
public void indexList() {
    List<Item> list = new ArrayList<>();
    list.add(new Item(2L, "坚果手机R1", " 手机", "锤子", 3699.00, "http://image.leyou.com/123.jpg"));
    list.add(new Item(3L, "华为META10", " 手机", "华为", 4499.00, "http://image.leyou.com/3.jpg"));
    // 接收对象集合,实现批量新增
    itemRepository.saveAll(list);
}

再次去页面查询:

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 1,
    "hits": [
      {
        "_index": "item",
        "_type": "docs",
        "_id": "2",
        "_score": 1,
        "_source": {
          "id": 2,
          "title": "坚果手机R1",
          "category": " 手机",
          "brand": "锤子",
          "price": 3699,
          "images": "http://image.leyou.com/13123.jpg"
        }
      },
      {
        "_index": "item",
        "_type": "docs",
        "_id": "3",
        "_score": 1,
        "_source": {
          "id": 3,
          "title": "华为META10",
          "category": " 手机",
          "brand": "华为",
          "price": 4499,
          "images": "http://image.leyou.com/13123.jpg"
        }
      },
      {
        "_index": "item",
        "_type": "docs",
        "_id": "1",
        "_score": 1,
        "_source": {
          "id": 1,
          "title": "小米手机7",
          "category": " 手机",
          "brand": "小米",
          "price": 3499,
          "images": "http://image.leyou.com/13123.jpg"
        }
      }
    ]
  }
}

5.3.修改文档

修改和新增是同一个接口,区分的依据就是id,这一点跟我们在页面发起PUT请求是类似的。

5.4.基本查询

ElasticsearchRepository提供了一些基本的查询方法:

我们来试试查询所有:

@Test
public void testFind(){
    // 查询全部,并安装价格降序排序
    Iterable<Item> items = this.itemRepository.findAll(Sort.by(Sort.Direction.DESC, "price"));
    items.forEach(item-> System.out.println(item));
}

结果:

5.5.自定义方法

Spring Data 的另一个强大功能,是根据方法名称自动实现功能。

比如:你的方法名叫做:findByTitle,那么它就知道你是根据title查询,然后自动帮你完成,无需写实现类。

当然,方法名称要符合一定的约定:

Keyword Sample Elasticsearch Query String
And findByNameAndPrice {"bool" : {"must" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Or findByNameOrPrice {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Is findByName {"bool" : {"must" : {"field" : {"name" : "?"}}}}
Not findByNameNot {"bool" : {"must_not" : {"field" : {"name" : "?"}}}}
Between findByPriceBetween {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
LessThanEqual findByPriceLessThan {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
GreaterThanEqual findByPriceGreaterThan {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Before findByPriceBefore {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
After findByPriceAfter {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Like findByNameLike {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
StartingWith findByNameStartingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
EndingWith findByNameEndingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "*?","analyze_wildcard" : true}}}}}
Contains/Containing findByNameContaining {"bool" : {"must" : {"field" : {"name" : {"query" : "**?**","analyze_wildcard" : true}}}}}
In findByNameIn(Collection<String>names) {"bool" : {"must" : {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"name" : "?"}} ]}}}}
NotIn findByNameNotIn(Collection<String>names) {"bool" : {"must_not" : {"bool" : {"should" : {"field" : {"name" : "?"}}}}}}
Near findByStoreNear Not Supported Yet !
True findByAvailableTrue {"bool" : {"must" : {"field" : {"available" : true}}}}
False findByAvailableFalse {"bool" : {"must" : {"field" : {"available" : false}}}}
OrderBy findByAvailableTrueOrderByNameDesc {"sort" : [{ "name" : {"order" : "desc"} }],"bool" : {"must" : {"field" : {"available" : true}}}}

例如,我们来按照价格区间查询,定义这样的一个方法:

public interface ItemRepository extends ElasticsearchRepository<Item,Long> {

    /**
     * 根据价格区间查询
     * @param price1
     * @param price2
     * @return
     */
    List<Item> findByPriceBetween(double price1, double price2);
}

然后添加一些测试数据:

@Test
public void indexList() {
    List<Item> list = new ArrayList<>();
    list.add(new Item(1L, "小米手机7", "手机", "小米", 3299.00, "http://image.leyou.com/13123.jpg"));
    list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3699.00, "http://image.leyou.com/13123.jpg"));
    list.add(new Item(3L, "华为META10", "手机", "华为", 4499.00, "http://image.leyou.com/13123.jpg"));
    list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00, "http://image.leyou.com/13123.jpg"));
    list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00, "http://image.leyou.com/13123.jpg"));
    // 接收对象集合,实现批量新增
    itemRepository.saveAll(list);
}

不需要写实现类,然后我们直接去运行:

@Test
public void queryByPriceBetween(){
    List<Item> list = this.itemRepository.findByPriceBetween(2000.00, 3500.00);
    for (Item item : list) {
        System.out.println("item = " + item);
    }
}

结果:

虽然基本查询和自定义方法已经很强大了,但是如果是复杂查询(模糊、通配符、词条查询等)就显得力不从心了。此时,我们只能使用原生查询。

6.高级查询

6.1.基本查询

先看看基本玩法

@Test
public void testQuery(){
    // 词条查询
    MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "小米");
    // 执行查询
    Iterable<Item> items = this.itemRepository.search(queryBuilder);
    items.forEach(System.out::println);
}

Repository的search方法需要QueryBuilder参数,elasticSearch为我们提供了一个对象QueryBuilders:

QueryBuilders提供了大量的静态方法,用于生成各种不同类型的查询对象,例如:词条、模糊、通配符等QueryBuilder对象。

结果:

elasticsearch提供很多可用的查询方式,但是不够灵活。如果想玩过滤或者聚合查询等就很难了。

6.2.自定义查询

先来看最基本的match query:

@Test
public void testNativeQuery(){
    // 构建查询条件
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 添加基本的分词查询
    queryBuilder.withQuery(QueryBuilders.matchQuery("title", "小米"));
    // 执行搜索,获取结果
    Page<Item> items = this.itemRepository.search(queryBuilder.build());
    // 打印总条数
    System.out.println(items.getTotalElements());
    // 打印总页数
    System.out.println(items.getTotalPages());
    items.forEach(System.out::println);
}

NativeSearchQueryBuilder:Spring提供的一个查询条件构建器,帮助构建json格式的请求体

Page<item>:默认是分页查询,因此返回的是一个分页的结果对象,包含属性:

  • totalElements:总条数
  • totalPages:总页数
  • Iterator:迭代器,本身实现了Iterator接口,因此可直接迭代得到当前页的数据
  • 其它属性:

结果:

6.3.分页查询

利用NativeSearchQueryBuilder可以方便的实现分页:

@Test
public void testNativeQuery(){
    // 构建查询条件
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 添加基本的分词查询
    queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));

    // 初始化分页参数
    int page = 0;
    int size = 3;
    // 设置分页参数
    queryBuilder.withPageable(PageRequest.of(page, size));

    // 执行搜索,获取结果
    Page<Item> items = this.itemRepository.search(queryBuilder.build());
    // 打印总条数
    System.out.println(items.getTotalElements());
    // 打印总页数
    System.out.println(items.getTotalPages());
    // 每页大小
    System.out.println(items.getSize());
    // 当前页
    System.out.println(items.getNumber());
    items.forEach(System.out::println);
}

结果:

可以发现,Elasticsearch中的分页是从第0页开始

6.4.排序

排序也通用通过NativeSearchQueryBuilder完成:

@Test
public void testSort(){
    // 构建查询条件
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 添加基本的分词查询
    queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));

    // 排序
    queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));

    // 执行搜索,获取结果
    Page<Item> items = this.itemRepository.search(queryBuilder.build());
    // 打印总条数
    System.out.println(items.getTotalElements());
    items.forEach(System.out::println);
}

结果:

6.聚合

6.1.聚合为桶

桶就是分组,比如这里我们按照品牌brand进行分组:

@Test
public void testAgg(){
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 不查询任何结果
    queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null));
    // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
    queryBuilder.addAggregation(
        AggregationBuilders.terms("brands").field("brand"));
    // 2、查询,需要把结果强转为AggregatedPage类型
    AggregatedPage<Item> aggPage = (AggregatedPage<Item>) this.itemRepository.search(queryBuilder.build());
    // 3、解析
    // 3.1、从结果中取出名为brands的那个聚合,
    // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
    StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
    // 3.2、获取桶
    List<StringTerms.Bucket> buckets = agg.getBuckets();
    // 3.3、遍历
    for (StringTerms.Bucket bucket : buckets) {
        // 3.4、获取桶中的key,即品牌名称
        System.out.println(bucket.getKeyAsString());
        // 3.5、获取桶中的文档数量
        System.out.println(bucket.getDocCount());
    }
}

显示的结果:

关键API:

  • AggregationBuilders:聚合的构建工厂类。所有聚合都由这个类来构建,看看他的静态方法:

  • AggregatedPage:聚合查询的结果类。它是Page<T>的子接口:

AggregatedPagePage功能的基础上,拓展了与聚合相关的功能,它其实就是对聚合结果的一种封装,大家可以对照聚合结果的JSON结构来看。

而返回的结果都是Aggregation类型对象,不过根据字段类型不同,又有不同的子类表示

我们看下页面的查询的JSON结果与Java类的对照关系:

6.2.嵌套聚合,求平均值

代码:

@Test
public void testSubAgg(){
    NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
    // 不查询任何结果
    queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null));
    // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
    queryBuilder.addAggregation(
        AggregationBuilders.terms("brands").field("brand")
        .subAggregation(AggregationBuilders.avg("priceAvg").field("price")) // 在品牌聚合桶内进行嵌套聚合,求平均值
    );
    // 2、查询,需要把结果强转为AggregatedPage类型
    AggregatedPage<Item> aggPage = (AggregatedPage<Item>) this.itemRepository.search(queryBuilder.build());
    // 3、解析
    // 3.1、从结果中取出名为brands的那个聚合,
    // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
    StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
    // 3.2、获取桶
    List<StringTerms.Bucket> buckets = agg.getBuckets();
    // 3.3、遍历
    for (StringTerms.Bucket bucket : buckets) {
        // 3.4、获取桶中的key,即品牌名称  3.5、获取桶中的文档数量
        System.out.println(bucket.getKeyAsString() + ",共" + bucket.getDocCount() + "台");

        // 3.6.获取子聚合结果:
        InternalAvg avg = (InternalAvg) bucket.getAggregations().asMap().get("priceAvg");
        System.out.println("平均售价:" + avg.getValue());
    }

}

结果:

原文出处:https://www.cnblogs.com/jimlau/p/12162128.html

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!