I am working on writing my own operating system. So far, my code exceeds 512 bytes, which is too large to fit in a simple boot sector.
I understand that I now have to write a bootloader that reads arbitrary code that may or may not be greater than a single 512-byte sector.
The bootloader would need to:
- Function as a boot record with disk signature 0xaa55.
- Read a second stage (the test code) start from LBA 1 (LBA 0 is boot sector) of arbitrary length starting at memory address 0x7E00.
- Transfer control to it using a FAR JMP to 0x0000:0x7E00.
- Be usable as a 1.44 MiB floppy disk image for use in emulators like QEMU, BOCHS, VirtualBox etc.
- Can be transferred and used on a USB stick to test on real hardware with the BIOS set to boot USB using Floppy Disk Drive (FDD) emulation. Note: Some bootloaders do not work well when placed on USB drives.
- Pass the boot drive to the second stage in DL.
- Zero out all the segment registers and set SS:SP to 0x0000:0x7C00 (grows down from just under the bootloader).
This would also serve as a good starting point for asking questions on Stack Overflow that involve OS development. Programmers often struggle to create a Minimal, Complete, and Verifiable Example. A common boilerplate/template would allow other Stack Overflow users wishing to help to test the code with a limited amount of fuss.
How would I go about building such a reusable bootloader?
I have written such code as part of other answers but never had an opportunity to present a simple test harness that could be referenced from other Stackoverflow questions. What you are asking for is rather trivial. One can do this by writing a bootloader in NASM that includes a binary image of the assembled code you wish to test. This image would be read from disk starting at LBA 1 (first sector after the bootloader) using BIOS function Int 13/ah=2. Control would then be transferred to it via a FAR JMP to 0x0000:0x7e00.
The bootloader code would look like this:
bpb.inc:
%define WITH_BPB 1
global bpb_disk_info
jmp boot_start
TIMES 3-($-$$) DB 0x90 ; Support 2 or 3 byte encoded JMPs before BPB.
bpb_disk_info:
; Dos 4.0 EBPB 1.44MB floppy
OEMname: db "mkfs.fat" ; mkfs.fat is what OEMname mkdosfs uses
bytesPerSector: dw 512
sectPerCluster: db 1
reservedSectors: dw 1
numFAT: db 2
numRootDirEntries: dw 224
numSectors: dw 2880
mediaType: db 0xf0
numFATsectors: dw 9
sectorsPerTrack: dw 18
numHeads: dw 2
numHiddenSectors: dd 0
numSectorsHuge: dd 0
driveNum: db 0
reserved: db 0
signature: db 0x29
volumeID: dd 0x2d7e5a1a
volumeLabel: db "NO NAME "
fileSysType: db "FAT12 "
boot.asm:
STAGE2_ABS_ADDR equ 0x07e00
STAGE2_RUN_SEG equ 0x0000
STAGE2_RUN_OFS equ STAGE2_ABS_ADDR
; Run stage2 with segment of 0x0000 and offset of 0x7e00
STAGE2_LOAD_SEG equ STAGE2_ABS_ADDR>>4
; Segment to start reading Stage2 into
; right after bootloader
STAGE2_LBA_START equ 1 ; Logical Block Address(LBA) Stage2 starts on
; LBA 1 = sector after boot sector
STAGE2_LBA_END equ STAGE2_LBA_START + NUM_STAGE2_SECTORS
; Logical Block Address(LBA) Stage2 ends at
DISK_RETRIES equ 3 ; Number of times to retry on disk error
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more comaptible with USB floppy media
%include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0 for stage2 loading
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Read Stage2 1 sector at a time until stage2 is completely loaded
load_stage2:
mov [bootDevice], dl ; Save boot drive
mov di, STAGE2_LOAD_SEG ; DI = Current segment to read into
mov si, STAGE2_LBA_START ; SI = LBA that stage2 starts at
jmp .chk_for_last_lba ; Check to see if we are last sector in stage2
.read_sector_loop:
mov bp, DISK_RETRIES ; Set disk retry count
call lba_to_chs ; Convert current LBA to CHS
mov es, di ; Set ES to current segment number to read into
xor bx, bx ; Offset zero in segment
.retry:
mov ax, 0x0201 ; Call function 0x02 of int 13h (read sectors)
; AL = 1 = Sectors to read
int 0x13 ; BIOS Disk interrupt call
jc .disk_error ; If CF set then disk error
.success:
add di, 512>>4 ; Advance to next 512 byte segment (0x20*16=512)
inc si ; Next LBA
.chk_for_last_lba:
cmp si, STAGE2_LBA_END ; Have we reached the last stage2 sector?
jl .read_sector_loop ; If we haven't then read next sector
.stage2_loaded:
mov ax, STAGE2_RUN_SEG ; Set up the segments appropriate for Stage2 to run
mov ds, ax
mov es, ax
; FAR JMP to the Stage2 entry point at physical address 0x07e00
xor ax, ax ; ES=FS=GS=0 (DS zeroed earlier)
mov es, ax
mov fs, ax
mov gs, ax
; SS:SP is already at 0x0000:0x7c00, keep it that way
; DL still contains the boot drive number
; Far jump to second stage at 0x0000:0x7e00
jmp STAGE2_RUN_SEG:STAGE2_RUN_OFS
.disk_error:
xor ah, ah ; Int13h/AH=0 is drive reset
int 0x13
dec bp ; Decrease retry count
jge .retry ; If retry count not exceeded then try again
error_end:
; Unrecoverable error; print drive error; enter infinite loop
mov si, diskErrorMsg ; Display disk error message
call print_string
cli
.error_loop:
hlt
jmp .error_loop
; Function: print_string
; Display a string to the console on display page 0
;
; Inputs: SI = Offset of address to print
; Clobbers: AX, BX, SI
print_string:
mov ah, 0x0e ; BIOS tty Print
xor bx, bx ; Set display page to 0 (BL)
jmp .getch
.repeat:
int 0x10 ; print character
.getch:
lodsb ; Get character from string
test al,al ; Have we reached end of string?
jnz .repeat ; if not process next character
.end:
ret
; Function: lba_to_chs
; Description: Translate Logical block address to CHS (Cylinder, Head, Sector).
; Works for all valid FAT12 compatible disk geometries.
;
; Resources: http://www.ctyme.com/intr/rb-0607.htm
; https://en.wikipedia.org/wiki/Logical_block_addressing#CHS_conversion
; https://stackoverflow.com/q/45434899/3857942
; Sector = (LBA mod SPT) + 1
; Head = (LBA / SPT) mod HEADS
; Cylinder = (LBA / SPT) / HEADS
;
; Inputs: SI = LBA
; Outputs: DL = Boot Drive Number
; DH = Head
; CH = Cylinder (lower 8 bits of 10-bit cylinder)
; CL = Sector/Cylinder
; Upper 2 bits of 10-bit Cylinders in upper 2 bits of CL
; Sector in lower 6 bits of CL
;
; Notes: Output registers match expectation of Int 13h/AH=2 inputs
;
lba_to_chs:
push ax ; Preserve AX
mov ax, si ; Copy LBA to AX
xor dx, dx ; Upper 16-bit of 32-bit value set to 0 for DIV
div word [sectorsPerTrack] ; 32-bit by 16-bit DIV : LBA / SPT
mov cl, dl ; CL = S = LBA mod SPT
inc cl ; CL = S = (LBA mod SPT) + 1
xor dx, dx ; Upper 16-bit of 32-bit value set to 0 for DIV
div word [numHeads] ; 32-bit by 16-bit DIV : (LBA / SPT) / HEADS
mov dh, dl ; DH = H = (LBA / SPT) mod HEADS
mov dl, [bootDevice] ; boot device, not necessary to set but convenient
mov ch, al ; CH = C(lower 8 bits) = (LBA / SPT) / HEADS
shl ah, 6 ; Store upper 2 bits of 10-bit Cylinder into
or cl, ah ; upper 2 bits of Sector (CL)
pop ax ; Restore scratch registers
ret
; Uncomment these lines if not using a BPB (via bpb.inc)
%ifndef WITH_BPB
numHeads: dw 2 ; 1.44MB Floppy has 2 heads & 18 sector per track
sectorsPerTrack: dw 18
%endif
bootDevice: db 0x00
diskErrorMsg: db "Unrecoverable disk error!", 0
; Pad boot sector to 510 bytes and add 2 byte boot signature for 512 total bytes
TIMES 510-($-$$) db 0
dw 0xaa55
; Beginning of stage2. This is at 0x7E00 and will allow your stage2 to be 32.5KiB
; before running into problems. DL will be set to the drive number originally
; passed to us by the BIOS.
NUM_STAGE2_SECTORS equ (stage2_end-stage2_start+511) / 512
; Number of 512 byte sectors stage2 uses.
stage2_start:
; Insert stage2 binary here. It is done this way since we
; can determine the size(and number of sectors) to load since
; Size = stage2_end-stage2_start
incbin "stage2.bin"
; End of stage2. Make sure this label is LAST in this file!
stage2_end:
; Fill out this file to produce a 1.44MB floppy image
TIMES 1024*1440-($-$$) db 0x00
To use this you would first generate a binary file called stage2.bin
. Then you would build the 1.44MiB disk image with this command:
nasm -f bin boot.asm -o disk.img
The code in stage2.bin
would have to be generated with the assumption that the ORG (origin point) is 0x07e00 in memory.
Sample Usage/Example
An example of code generated to a file called stage2.bin
that can be loaded with this test harness:
testcode.asm:
ORG 0x7e00
start:
mov si, testCodeStr
call print_string
cli
.end_loop:
hlt
jmp .end_loop
testCodeStr: db "Test harness loaded and is executing code in stage2!", 0
; Function: print_string
; Display a string to the console on display page 0
;
; Inputs: SI = Offset of address to print
; Clobbers: AX, BX, SI
print_string:
mov ah, 0x0e ; BIOS tty Print
xor bx, bx ; Set display page to 0 (BL)
jmp .getch
.repeat:
int 0x10 ; print character
.getch:
lodsb ; Get character from string
test al,al ; Have we reached end of string?
jnz .repeat ; if not process next character
.end:
ret
Note: there is an ORG 0x7e00
at the top. This is important. To assemble this file into stage2.bin
use:
nasm -f bin testcode.asm -o stage2.bin
Then create the 1.44MiB disk image with:
nasm -f bin boot.asm -o disk.img
The result should be a disk image exactly 1.44MiB in size, contains a copy of stage2.bin
and has our test harness boot sector.
The file stage2.bin
can be anything that has binary code written to be loaded and started at 0x0000:0x7e00. The language (C, assembly etc) used to create the code in stage2.bin
doesn't matter. I use NASM for this example. When this test code is executed in QEMU using qemu-system-i386 -fda disk.img
it would look similar to this:
Special Note: : If you don't want to use bpb.inc
and don't intend to boot from USB using FDD emulation you can comment out or remove this line in boot.asm
%include "bpb.inc"
I modified my own boot sector loader to add a new protocol. It makes it set es = ds = ss = 0 and load the whole load file to address 07E00h, jumping to that at 0000h:7E00h. However, sp is left pointing somewhat below 7C00h.
And there's the big difference to the requirements in the question: This loader uses the (FAT12 or FAT16) filesystem to load the next stage. It loads from a file named KERNEL7E.BIN if found. The file name, like the entire load protocol, can be adjusted by editing the source file or passing defines on the NASM command line.
A limitation due to the code size is that only single-character error messages are output when an error occurs: R means disk Read error, M means the file to be loaded is too large (out of Memory). Another limitation is that the RPL (Remote Program Loader) protocol isn't used as it needs some more bytes.
To lessen the space pressure, the loader can be built with -D_CHS=0 -D_QUERY_GEOMETRY=0
(if to load via ROM-BIOS's LBA interface) or -D_LBA=0
(if to load via CHS interface).
To build the loader, clone the lmacros and ldosboot repositories, and put them next to each other. The loader is to be built from the ldosboot directory with NASM this way for FAT12:
$ nasm -I ../lmacros/ boot.asm -l boot7e12.lst -D_MAP=boot7e12.map -o boot7e12.bin -D_COMPAT_KERNEL7E
Or this way for FAT16:
$ nasm -I ../lmacros/ boot.asm -l boot7e16.lst -D_MAP=boot7e16.map -o boot7e16.bin -D_FAT16 -D_COMPAT_KERNEL7E
Here's how to install the loader into an existing already-formatted FAT12 or FAT16 file system image:
dd if=boot7e12.bin of=floppy.img bs=1 count=11 conv=notrunc
dd if=boot7e12.bin of=floppy.img bs=1 count=$((512 - 0x3e)) seek=$((0x3e)) skip=$((0x3e)) conv=notrunc
Instead of using an existing image, an entire image can be created by NASM. I wrote such a program at https://bitbucket.org/ecm/bootimg/src/default/ It builds like this:
nasm -I ../lmacros/ -D_BOOTFILE="'../ldosboot/boot12.bin'" -D_MULTIPAYLOADFILE="'../ldebug/bin/ldebug.com','../ldebug/bin/lddebug.com'" bootimg.asm -o bootimg.img
Note how the long def has double quotes around single-quoted list entries. Each list entry is stripped to the basename (after the last slash or backslash), has its content added to the data area, and has a directory entry added to the root directory. Filenames are ASCII and in allcaps.
The ldosboot repo contains a two-sector FAT32 loader too, but I didn't modify it to support this protocol yet. With relocation, the FAT buffer should be at the top of memory already. That means the file can be loaded to 07E00h. However, ss will be at a high segment instead of zero. Other than that difference, the protocol can be specified with switches. The command to build this is nasm -I ../lmacros/ boot32.asm -l boot7e32.lst -D_MAP=boot7e32.map -o boot7e32.bin -D_RELOCATE -D_MEMORY_CONTINUE=0 -D_ZERO_DS -D_ZERO_ES -D_SET_BL_UNIT=0 -D_SET_DL_UNIT=1 -D_LOAD_ADR=07E00h -D_EXEC_SEG_ADJ=-7E0h -D_EXEC_OFS=7E00h -D_OEM_NAME="'KERNEL7E'" -D_LOAD_NAME="'KERNEL7E'" -D_LOAD_EXT="'BIN'"
There's also the instsect program (in its own repo) for DOS, which is built with loader images and installs them to a DOS drive.
来源:https://stackoverflow.com/questions/54894585/legacy-bios-bootloader-to-bootstrap-real-mode-code-in-second-stage