1、证明:由理想点源天线构成的一维线性均匀阵列天线(如图所示),扫描角度为 θ \theta θ,为保证天线方向图不出现栅瓣,阵元之间的距离 D D D必须小于 λ 1 + ∣ sin θ ∣ \frac{\lambda}{1+|\sin\theta|} 1+∣sinθ∣λ。
设相邻阵元的总相位差为: u = k ▽ r + ψ = k d sin θ + ψ u=k\triangledown r+\psi=kd\sin\theta+\psi u=k▽r+ψ=kdsinθ+ψ, ψ \psi ψ为相邻单元的馈电相位差
则阵列天线的总辐射电场为:
E ( θ ) = ∑ n = 1 N e j ( n − 1 ) ( k d sin θ + ψ ) = 1 + e j ( k d sin θ + ψ ) + ⋯ + e j ( N − 1 ) ( k d sin θ + ψ ) = 1 − e j N ( k d sin θ + ψ ) 1 − e j ( k d sin θ + ψ ) = 1 − cos ( N ( k d sin θ + ψ ) ) − j sin ( N ( k d sin θ + ψ ) ) 1 − cos ( k d sin θ + ψ ) − j sin ( k d sin θ + ψ ) ∣ E ( θ ) ∣ = [ 1 − cos ( N ( k d sin θ + ψ ) ) ] 2 + [ sin ( N ( k d sin θ + ψ ) ) ] 2 [ 1 − cos ( k d sin θ + ψ ) ] 2 + [ sin ( k d sin θ + ψ ) ] 2 = 1 − cos ( N ( k d sin θ + ψ ) ) 1 − cos ( k d sin θ + ψ ) = ∣ sin ( N ( k d sin θ + ψ ) / 2 ) sin ( ( k d sin θ + ψ ) / 2 ) ∣ \begin{aligned} E(\theta)&=\sum_{n=1}^{N}e^{j(n-1)(kd\sin\theta+\psi)}\\&= 1+e^{j(kd\sin\theta+\psi)}+\cdots+e^{j(N-1)(kd\sin\theta+\psi)}\\&= \frac{1-e^{jN(kd\sin\theta+\psi)}}{1-e^{j(kd\sin\theta+\psi)}}\\&= \frac{1-\cos(N(kd\sin\theta+\psi))-j\sin(N(kd\sin\theta+\psi))}{1-\cos(kd\sin\theta+\psi)-j\sin(kd\sin\theta+\psi)}\\ |E(\theta)|&=\sqrt{\frac{[1-\cos(N(kd\sin\theta+\psi))]^2+[\sin(N(kd\sin\theta+\psi))]^2}{[1-\cos(kd\sin\theta+\psi)]^2+[\sin(kd\sin\theta+\psi)]^2}}\\&= \sqrt{\frac{1-\cos(N(kd\sin\theta+\psi))}{1-\cos(kd\sin\theta+\psi)}}\\&= |\frac{\sin(N(kd\sin\theta+\psi)/2)}{\sin((kd\sin\theta+\psi)/2)}| \end{aligned} E(θ)∣E(θ)∣=n=1∑Nej(n−1)(kdsinθ+ψ)=1+ej(kdsinθ+ψ)+⋯+ej(N−1)(kdsinθ+ψ)=1−ej(kdsinθ+ψ)1−ejN(kdsinθ+ψ)=1−cos(kdsinθ+ψ)−jsin(kdsinθ+ψ)1−cos(N(kdsinθ+ψ))−jsin(N(kdsinθ+ψ))=[1−cos(kdsinθ+ψ)]2+[sin(kdsinθ+ψ)]2[1−cos(N(kdsinθ+ψ))]2+[sin(N(kdsinθ+ψ))]2 =1−cos(kdsinθ+ψ)1−cos(N(kdsinθ+ψ)) =∣sin((kdsinθ+ψ)/2)sin(N(kdsinθ+ψ)/2)∣
则归一化的方向函数为:
F ( θ ) = ∣ E ( θ ) ∣ ∣ E ( θ ) M ∣ = ∣ 1 N sin ( N ( k d sin θ + ψ ) / 2 ) sin ( ( k d sin θ + ψ ) / 2 ) ∣ F(\theta)=\frac{|E(\theta)|}{|E(\theta)_M|}=|\frac{1}{N}\frac{\sin(N(kd\sin\theta+\psi)/2)}{\sin((kd\sin\theta+\psi)/2)}| F(θ)=∣E(θ)M∣∣E(θ)∣=∣N1sin((kdsinθ+ψ)/2)sin(N(kdsinθ+ψ)/2)∣
当 ψ = 0 \psi=0 ψ=0,即当各阵元等幅同相馈电时,由归一化的方向函数可知:
θ = 0 \theta=0 θ=0, F ( θ ) = 1 F(\theta)=1 F(θ)=1,即方向图最大方向在阵列法向方向上。
当 ψ ≠ 0 \psi\not=0 ψ=0时,则方向图最大值方向就要进行偏移,偏移角 θ 0 \theta_0 θ0由移相器的相移量 ψ \psi ψ决定:
改变 ψ \psi ψ,就可以改变波束指向角 θ 0 \theta_0 θ0,从而形成波束扫描。
ψ = k d sin θ 0 \psi=kd\sin\theta_0 ψ=kdsinθ0
( k d sin θ + ψ ) / 2 < π (kd\sin\theta+\psi)/2<\pi (kdsinθ+ψ)/2<π
k d ( sin θ + sin θ 0 ) < 2 π kd(\sin\theta+\sin\theta_0)<2\pi kd(sinθ+sinθ0)<2π
2 π λ d ( sin θ + sin θ 0 ) < 2 π \frac{2\pi}{\lambda}d(\sin\theta+\sin\theta_0)<2\pi λ2πd(sinθ+sinθ0)<2π
d < λ 1 + ∣ sin θ 0 ∣ d<\frac{\lambda}{1+|\sin\theta_0|} d<1+∣sinθ0∣λ
证毕。
来源:oschina
链接:https://my.oschina.net/u/4385242/blog/4707904