问题
I'm not a SQL expert, but if anybody can help me.
I use a recursive CTE to get the values as below.
Child1 --> Parent 1
Parent1 --> Parent 2
Parent2 --> NULL
If data population has gone wrong, then I'll have something like below, because of which CTE may go to infinite recursive loop and gives max recursive error. Since the data is huge, I cannot check this bad data manually. Please let me know if there is a way to find it out.
Child1 --> Parent 1
Parent1 --> Child1
or
Child1 --> Parent 1
Parent1 --> Parent2
Parent2 --> Child1
回答1:
You haven't specified the dialect or your column names, so it is difficult to make the perfect example...
-- Some random data
IF OBJECT_ID('tempdb..#MyTable') IS NOT NULL
DROP TABLE #MyTable
CREATE TABLE #MyTable (ID INT PRIMARY KEY, ParentID INT NULL, Description VARCHAR(100))
INSERT INTO #MyTable (ID, ParentID, Description) VALUES
(1, NULL, 'Parent'), -- Try changing the second value (NULL) to 1 or 2 or 3
(2, 1, 'Child'), -- Try changing the second value (1) to 2
(3, 2, 'SubChild')
-- End random data
;WITH RecursiveCTE (StartingID, Level, Parents, Loop, ID, ParentID, Description) AS
(
SELECT ID, 1, '|' + CAST(ID AS VARCHAR(MAX)) + '|', 0, * FROM #MyTable
UNION ALL
SELECT R.StartingID, R.Level + 1,
R.Parents + CAST(MT.ID AS VARCHAR(MAX)) + '|',
CASE WHEN R.Parents LIKE '%|' + CAST(MT.ID AS VARCHAR(MAX)) + '|%' THEN 1 ELSE 0 END,
MT.*
FROM #MyTable MT
INNER JOIN RecursiveCTE R ON R.ParentID = MT.ID AND R.Loop = 0
)
SELECT StartingID, Level, Parents, MAX(Loop) OVER (PARTITION BY StartingID) Loop, ID, ParentID, Description
FROM RecursiveCTE
ORDER BY StartingID, Level
Something like this will show if/where there are loops in the recursive cte. Look at the column Loop
. With the data as is, there is no loops. In the comments there are examples on how to change the values to cause a loop.
In the end the recursive cte creates a VARCHAR(MAX)
of ids in the form |id1|id2|id3|
(called Parents
) and then checks if the current ID
is already in that "list". If yes, it sets the Loop
column to 1. This column is checked in the recursive join (the ABD R.Loop = 0
).
The ending query uses a MAX() OVER (PARTITION BY ...)
to set to 1 the Loop
column for a whole "block" of chains.
A little more complex, that generates a "better" report:
-- Some random data
IF OBJECT_ID('tempdb..#MyTable') IS NOT NULL
DROP TABLE #MyTable
CREATE TABLE #MyTable (ID INT PRIMARY KEY, ParentID INT NULL, Description VARCHAR(100))
INSERT INTO #MyTable (ID, ParentID, Description) VALUES
(1, NULL, 'Parent'), -- Try changing the second value (NULL) to 1 or 2 or 3
(2, 1, 'Child'), -- Try changing the second value (1) to 2
(3, 3, 'SubChild')
-- End random data
-- The "terminal" childrens (that are elements that don't have childrens
-- connected to them)
;WITH WithoutChildren AS
(
SELECT MT1.* FROM #MyTable MT1
WHERE NOT EXISTS (SELECT 1 FROM #MyTable MT2 WHERE MT1.ID != MT2.ID AND MT1.ID = MT2.ParentID)
)
, RecursiveCTE (StartingID, Level, Parents, Descriptions, Loop, ParentID) AS
(
SELECT ID, -- StartingID
1, -- Level
'|' + CAST(ID AS VARCHAR(MAX)) + '|',
'|' + CAST(Description AS VARCHAR(MAX)) + '|',
0, -- Loop
ParentID
FROM WithoutChildren
UNION ALL
SELECT R.StartingID, -- StartingID
R.Level + 1, -- Level
R.Parents + CAST(MT.ID AS VARCHAR(MAX)) + '|',
R.Descriptions + CAST(MT.Description AS VARCHAR(MAX)) + '|',
CASE WHEN R.Parents LIKE '%|' + CAST(MT.ID AS VARCHAR(MAX)) + '|%' THEN 1 ELSE 0 END,
MT.ParentID
FROM #MyTable MT
INNER JOIN RecursiveCTE R ON R.ParentID = MT.ID AND R.Loop = 0
)
SELECT * FROM RecursiveCTE
WHERE ParentID IS NULL OR Loop = 1
This query should return all the "last child" rows, with the full parent chain. The column Loop
is 0
if there is no loop, 1
if there is a loop.
回答2:
With Postgres it's quite easy to prevent this by collecting all visited nodes in an array.
Setup:
create table hierarchy (id integer, parent_id integer);
insert into hierarchy
values
(1, null), -- root element
(2, 1), -- first child
(3, 1), -- second child
(4, 3),
(5, 4),
(3, 5); -- endless loop
Recursive query:
with recursive tree as (
select id,
parent_id,
array[id] as all_parents
from hierarchy
where parent_id is null
union all
select c.id,
c.parent_id,
p.all_parents||c.id
from hierarchy c
join tree p
on c.parent_id = p.id
and c.id <> ALL (p.all_parents) -- this is the trick to exclude the endless loops
)
select *
from tree;
To do this for multiple trees at the same time, you need to carry over the ID of the root node to the children:
with recursive tree as (
select id,
parent_id,
array[id] as all_parents,
id as root_id
from hierarchy
where parent_id is null
union all
select c.id,
c.parent_id,
p.all_parents||c.id,
p.root_id
from hierarchy c
join tree p
on c.parent_id = p.id
and c.id <> ALL (p.all_parents) -- this is the trick to exclude the endless loops
and c.root_id = p.root_id
)
select *
from tree;
回答3:
You can use the same approach described by Knuth for detecting a cycle in a linked list here. In one column, keep track of the children, the children's children, the children's children's children, etc. In another column, keep track of the grandchildren, the grandchildren's grandchildren, the grandchildren's grandchildren's grandchildren, etc.
For the initial selection, the distance between Child
and Grandchild
columns is 1. Every selection from union all
increases the depth of Child
by 1, and that of Grandchild
by 2. The distance between them increases by 1.
If you have any loop, since the distance only increases by 1 each time, at some point after Child
is in the loop, the distance will be a multiple of the cycle length. When that happens, the Child
and the Grandchild
columns are the same. Use that as an additional condition to stop the recursion, and detect it in the rest of your code as an error.
SQL Server sample:
declare @LinkTable table (Parent int, Child int);
insert into @LinkTable values (1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (7, 1);
with cte as (
select lt1.Parent, lt1.Child, lt2.Child as Grandchild
from @LinkTable lt1
inner join @LinkTable lt2 on lt2.Parent = lt1.Child
union all
select cte.Parent, lt1.Child, lt3.Child as Grandchild
from cte
inner join @LinkTable lt1 on lt1.Parent = cte.Child
inner join @LinkTable lt2 on lt2.Parent = cte.Grandchild
inner join @LinkTable lt3 on lt3.Parent = lt2.Child
where cte.Child <> cte.Grandchild
)
select Parent, Child
from cte
where Child = Grandchild;
Remove one of the LinkTable
records that causes the cycle, and you will find that the select
no longer returns any data.
回答4:
Here is the solution for SQL Server:
Table Insert script:
CREATE TABLE MyTable
(
[ID] INT,
[ParentID] INT,
[Name] NVARCHAR(255)
);
INSERT INTO MyTable
(
[ID],
[ParentID],
[Name]
)
VALUES
(1, NULL, 'A root'),
(2, NULL, 'Another root'),
(3, 1, 'Child of 1'),
(4, 3, 'Grandchild of 1'),
(5, 4, 'Great grandchild of 1'),
(6, 1, 'Child of 1'),
(7, 8, 'Child of 8'),
(8, 7, 'Child of 7'), -- This will cause infinite recursion
(9, 1, 'Child of 1');
Script to find the exact records which are the culprit:
;WITH RecursiveCTE
AS (
-- Get all parents:
-- Any record in MyTable table could be an Parent
-- We don't know here yet which record can involve in an infinite recursion.
SELECT ParentID AS StartID,
ID,
CAST(Name AS NVARCHAR(255)) AS [ParentChildRelationPath]
FROM MyTable
UNION ALL
-- Recursively try finding all the childrens of above parents
-- Keep on finding it until this child become parent of above parent.
-- This will bring us back in the circle to parent record which is being
-- keep in the StartID column in recursion
SELECT RecursiveCTE.StartID,
t.ID,
CAST(RecursiveCTE.[ParentChildRelationPath] + ' -> ' + t.Name AS NVARCHAR(255)) AS [ParentChildRelationPath]
FROM RecursiveCTE
INNER JOIN MyTable AS t
ON t.ParentID = RecursiveCTE.ID
WHERE RecursiveCTE.StartID != RecursiveCTE.ID)
-- FInd the ones which causes the infinite recursion
SELECT StartID,
[ParentChildRelationPath],
RecursiveCTE.ID
FROM RecursiveCTE
WHERE StartID = ID
OPTION (MAXRECURSION 0);
Output of above query:
回答5:
Try to limit the recursive result
WITH EMP_CTE AS
(
SELECT
0 AS [LEVEL],
ManagerId, EmployeeId, Name
FROM Employees
WHERE ManagerId IS NULL
UNION ALL
SELECT
[LEVEL] + 1 AS [LEVEL],
ManagerId, EmployeeId, Name
FROM Employees e
INNER JOIN EMP_CTE c ON e.ManagerId = c.EmployeeId
AND s.LEVEL < 100 --RECURSION LIMIT
)
SELECT * FROM EMP_CTE WHERE [Level] = 100
回答6:
Here's an alternate method for detecting cycles in adjacency lists (parent/child relationships) where nodes can only have one parent which can be enforced with a unique constraint on the child column (id
in the table below). This works by computing the closure table for the adjacency list via a recursive query. It starts by adding every node to the closure table as its own ancestor at level 0 then iteratively walks the adjacency list to expand the closure table. Cycles are detected when a new record's child and ancestor are the same at any level other than the original level zero (0):
-- For PostgreSQL and MySQL 8 use the Recursive key word in the CTE code:
-- with RECURSIVE cte(ancestor, child, lev, cycle) as (
with cte(ancestor, child, lev, cycle) as (
select id, id, 0, 0 from Table1
union all
select cte.ancestor
, Table1.id
, case when cte.ancestor = Table1.id then 0 else cte.lev + 1 end
, case when cte.ancestor = Table1.id then cte.lev + 1 else 0 end
from Table1
join cte
on cte.child = Table1.PARENT_ID
where cte.cycle = 0
) -- In oracle uncomment the next line
-- cycle child set isCycle to 'Y' default 'N'
select distinct
ancestor
, child
, lev
, max(cycle) over (partition by ancestor) cycle
from cte
Given the following adjacency list for Table1:
| parent_id | id |
|-----------|----|
| (null) | 1 |
| (null) | 2 |
| 1 | 3 |
| 3 | 4 |
| 1 | 5 |
| 2 | 6 |
| 6 | 7 |
| 7 | 8 |
| 9 | 10 |
| 10 | 11 |
| 11 | 9 |
The above query which works on SQL Sever (and Oracle, PostgreSQL and MySQL 8 when modified as directed) rightly detects that nodes 9, 10, and 11 participate in a cycle of length 3.
SQL(/DB) Fiddles demonstrating this in various DBs can be found below:
- Oracle 11gR2
- SQL Server 2017
- PostgeSQL 9.5
- MySQL 8
来源:https://stackoverflow.com/questions/31739150/to-find-infinite-recursive-loop-in-cte