HYGGE 高数上册极限与微分

↘锁芯ラ 提交于 2020-10-28 11:45:23

首先,我们要记住一些基本的定义:

1.连续:设函数y=f(x)在点x0的领域内有定义,如果lim(△x->0)△y=lim(△x->0)(f(x0+△x)-f(x0))=0,那么就称函数y=f(x)在点x0处连续,也可定义如下:设函数y=f(x)在点x0的领域内有定义,如果lim(x->x0)f(x0)=f(x0),那么就称y=f(x)在点x0处连续。

2.导数:设函数y=f(x)在点x0的领域内有定义,当自变量xx0处取得增量△x(x0+△x仍然在该领域内),相应地,因变量取得增量△y=f(x0+△x)-f(x0);如果△y△x之比当x->x0时极限存在,那么称函数y=f(x)x0处可导,并且这个极限为函数y=f(x)在点x0的导数,记做f’(x),f’(x0)=lim(△x->0)(△y/△x)=lim(△x->0)(f(x0+△x)-f(x0))/△x,也可记做y’|x=x0或者dy/dx|x=x0.

3.函数可导性与连续性的关系:可导必然连续,但是连续不一定可导,eg.f(x)=|x|.连续是可导的前提条件。

4.一些基本的导数公式:(arctan x)’=1/(1+x2),(arccot x)’=-1/(1+x2)

5.求导常用的公式集合:(u+v)(n),

  (sin x)(n)=sin(x+n*π/2),

  (cos x)(n)=cos(x+n*π/2),

  ln(x+1)=(-1)n-1*(n-1)!/(1+x)  and sec.

比较记忆:泰勒公式 ex =1+x+x2/2!+...+x^n/n!+o(xn) ,     

  sin x=x-1/3! *x3 +...+(-1)n/(2n+1)! *x2n+1  +o(x2n+2),

  cos x=1-1/2! *x2+...+(-1)n/(2n)! *x2n  +o(x2n+1),

  ln(1+x)=x-x2/2+x3/3+...+(-1)n-1*xn/n+o(xn).

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!