Selecting last n columns and excluding last n columns in dataframe

你离开我真会死。 提交于 2019-11-27 22:21:54

just do:

y = dataframe[dataframe.columns[-3:]]

This slices the columns so you can sub-select from the df

Example:

In [221]:
df = pd.DataFrame(columns=np.arange(10))
df[df.columns[-3:]]

Out[221]:
Empty DataFrame
Columns: [7, 8, 9]
Index: []

I think the issue here is that because you have taken a slice of the df, it's returned a view but depending on what the rest of your code is doing it's raising a warning. You can make an explicit copy by calling .copy() to remove the warnings.

So if we take a copy then assignment only affects the copy and not the original df:

In [15]:
df = pd.DataFrame(np.random.randn(5,10), columns= np.arange(10))
df

Out[15]:
          0         1         2         3         4         5         6  \
0  0.568284 -1.488447  0.970365 -1.406463 -0.413750 -0.934892 -1.421308   
1  1.186414 -0.417366 -1.007509 -1.620530 -1.322004  0.294540  1.205115   
2 -1.073894 -0.214972  1.516563 -0.705571  0.068666  1.690654 -0.252485   
3  0.923524 -0.856752  0.226294 -0.660085  1.259145  0.400596  0.559028   
4  0.259807  0.135300  1.130347 -0.317305 -1.031875  0.232262  0.709244   

          7         8         9  
0  1.741925 -0.475619 -0.525770  
1  2.137546  0.215665  1.908362  
2  1.180281 -0.144652  0.870887  
3 -0.609804 -0.833186 -1.033656  
4  0.480943  1.971933  1.928037  

In [16]:    
y = df[df.columns[-3:]].copy()
y

Out[16]:
          7         8         9
0  1.741925 -0.475619 -0.525770
1  2.137546  0.215665  1.908362
2  1.180281 -0.144652  0.870887
3 -0.609804 -0.833186 -1.033656
4  0.480943  1.971933  1.928037

In [17]:    
y[y>0] = 0
print(y)
df

          7         8         9
0  0.000000 -0.475619 -0.525770
1  0.000000  0.000000  0.000000
2  0.000000 -0.144652  0.000000
3 -0.609804 -0.833186 -1.033656
4  0.000000  0.000000  0.000000
Out[17]:
          0         1         2         3         4         5         6  \
0  0.568284 -1.488447  0.970365 -1.406463 -0.413750 -0.934892 -1.421308   
1  1.186414 -0.417366 -1.007509 -1.620530 -1.322004  0.294540  1.205115   
2 -1.073894 -0.214972  1.516563 -0.705571  0.068666  1.690654 -0.252485   
3  0.923524 -0.856752  0.226294 -0.660085  1.259145  0.400596  0.559028   
4  0.259807  0.135300  1.130347 -0.317305 -1.031875  0.232262  0.709244   

          7         8         9  
0  1.741925 -0.475619 -0.525770  
1  2.137546  0.215665  1.908362  
2  1.180281 -0.144652  0.870887  
3 -0.609804 -0.833186 -1.033656  
4  0.480943  1.971933  1.928037  

Here no warning is raised and the original df is untouched.

This is because of using integer indices (ix selects those by label over -3 rather than position, and this is by design: see integer indexing in pandas "gotchas"*).

*In newer versions of pandas prefer loc or iloc to remove the ambiguity of ix as position or label:

df.iloc[-3:] see the docs.

As Wes points out, in this specific case you should just use tail!

It should also be noted that in Pandas pre-0.14 iloc will raise an IndexError on an out-of-bounds access, while .head() and .tail() will not:

pd.version '0.12.0' df = pd.DataFrame([{"a": 1}, {"a": 2}]) df.iloc[-5:] ... IndexError: out-of-bounds on slice (end) df.tail(5) a 0 1 1 2 Old answer (depreciated method):

You can use the irows DataFrame method to overcome this ambiguity:

In [11]: df1.irow(slice(-3, None)) Out[11]: STK_ID RPT_Date TClose sales discount 8 568 20080331 38.75 12.668 NaN 9 568 20080630 30.09 21.102 NaN 10 568 20080930 26.00 30.769 NaN Note: Series has a similar iget method.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!