NeurIPS 今年共收录1900篇论文,我该怎么阅读?

女生的网名这么多〃 提交于 2020-10-14 16:02:19

  

  作者 | 陈大鑫

  近日,知乎上有个小热的问题:

  

  在这个问题下,已经有众多大佬对如何阅读论文进行献言献策。

  确实,今年NeurIPS 2020有接近两千篇论文被接收,这是一个什么概念?

  据说,AI圈子的一位大神:旷视科技张祥雨博士,3年看完了1800篇论文。

  这已经是相当恐怖的速度了,按照这个速度,对大神而言,读完NeurIPS 2020的论文尚且需要花费三年的时间,这让别人该何去何从?

  关于如何读论文,AI科技评论之前也有一篇“”的文章 ,大家可以再次阅读学习。

  按照吴恩达的观点,读论文不能贪快,要高质量、持续地阅读学习才是正道。

  今日,AI科技评论以NeurIPS 2020接近两千篇的论文为例,给大家提供两个论文阅读的便利。

  1、阅读大牛的论文:

  见“ ”一文。

  在这篇文章中,AI科技评论列举了AI学术大牛如深度学习三巨头、周志华、李飞飞等人的论文,大牛的团队出品的论文,质量平均而言肯定有很大保证的。

  2、按主题分门别类的阅读:

  这是显而易见的选择,也是大家正在做的事情,AI科技评论今天这篇文章正是把NeurIPS 2020的论文做了一个简单分类统计供大家参考阅读。

  说明:

  1、统计主题根 据日常经常接触到的i进行,不保证全面。

  2、统计会有交叉和重复:如论文 《Semi-Supervised Neural Architecture Search》会被半监督学习和NAS统计两次。

  3、统计基于“人工”(的)智能,若有疏漏和错误请怪在AI身上。

  4、本文统计后续补充会持续更新在AI科技评论知乎专栏上,欢迎大家关注。

  1

  前奏

  

  1、论文题目最短的论文:

  《Choice Bandits》

  

  《Language Models are Few-Shot Learners 》

  

  3、模仿Attenton is all you need?

  

  4、五篇和新冠肺炎有关的论文:

  《何时以及如何解除风险?基于区域高斯过程的全球COVID-19(新冠肺炎)情景分析与政策评估》

  

  《新冠肺炎在德国传播的原因分析》

  

  《CogMol:新冠肺炎靶向性和选择性药物设计》

  

  《非药物干预对新冠肺炎传播有效性估计的鲁棒性研究》

  

  《新冠肺炎预测的可解释序列学习》

  

  另附:COVID-19 Open Data:新冠疫情开放时序数据集 https://github.com/GoogleCloudPlatform/covid-19-open-data

  5、五篇Rethinking的文章:

  《重新思考标签对改善类不平衡学习的价值》

  

  《重新思考预训练和自训练》

  

  这篇由谷歌大脑出品的论文6月11日就挂在arXiv上面了,

  论文链接:https://arxiv.org/pdf/2006.06882

  《重新思考图神经网络的池化层》

  

  《重新思考通用特征转换中可学习树Filter》

  
《重新思考分布转移/转换下深度学习的重要性权重 》

  

  6、题目带有Beyond的论文:

  今年ACL 2020最佳论文题目正是带有Beyond一词,以下论文中的某一篇说不定会沾沾ACL 2020最佳论文的喜气在NeurIPS 2020上面获个大奖。(如未获奖,概不负责)

  

  

  其中第一篇论文以Beyond accuracy开头,这和ACL 2020最佳论文题目开头一模一样了。

  7、题目比较有意思的论文:

  《Teaching a GAN What Not to Learn》
Siddarth Asokan (Indian Institute of Science) · Chandra Seelamantula (IISc Bangalore)

  《Self-supervised learning through the eyes of a child》
Emin Orhan (New York University) · Vaibhav Gupta (New York University) · Brenden Lake (New York University)

  《How hard is to distinguish graphs with graph neural networks?》
Andreas Loukas (EPFL)

  《 Tree! I am no Tree! I am a low dimensional Hyperbolic Embedding》

  Rishi S Sonthalia (University of Michigan) · Anna Gilbert (University of Michigan)

  8、Relu:7篇

  

  

  2

  NLP相关

  

  1、BERT:7篇

  

  

  

  

  

  

  

  

  

  2、Attention:24篇,这里Attention不止有用在NLP领域,这里暂且归到NLP分类下,下同。

  1、Auto LearningAttention

  Benteng Ma (Northwestern Polytechnical University) · Jing Zhang (The University of Sydney) · Yong Xia (Northwestern Polytechnical University, Research & Development Institute of Northwestern Polytechnical University in Shenzhen) · Dacheng Tao (University of Sydney)

  2、BayesianAttentionModules

  Xinjie Fan (UT Austin) · Shujian Zhang (UT Austin) · Bo Chen (Xidian University) · Mingyuan Zhou (University of Texas at Austin)

  3、Improving Natural Language Processing Tasks with Human Gaze-Guided NeuralAttention

  Ekta Sood (University of Stuttgart, Simtech ) · Simon Tannert (Institute for Natural Language Processing, University of Stuttgart) · Philipp Mueller (VIS, University of Stuttgart) · Andreas Bulling (University of Stuttgart)

  4、Prophet Attention: Predicting Attention with FutureAttentionfor Improved Image Captioning

  Fenglin Liu (Peking University) · Xuancheng Ren (Peking University) · Xian Wu (Tencent Medical AI Lab) · Shen Ge (Tencent Medical AI Lab) · Wei Fan (Tencent) · Yuexian Zou (Peking University) · Xu Sun (Peking University)

  5、Kalman FilteringAttentionfor User Behavior Modeling in CTR Prediction

  Hu Liu (JD.com) · Jing LU (Business Growth BU JD.com) · Xiwei Zhao (JD.com) · Sulong Xu (JD.com) · Hao Peng (JD.com) · Yutong Liu (JD.com) · Zehua Zhang (JD.com) · Jian Li (JD.com) · Junsheng Jin (JD.com) · Yongjun Bao (JD.com) · Weipeng Yan (JD.com)

  6、RANet: RegionAttentionNetwork for Semantic Segmentation

  Dingguo Shen (Shenzhen University) · Yuanfeng Ji (City University of Hong Kong) · Ping Li (The Hong Kong Polytechnic University) · Yi Wang (Shenzhen University) · Di Lin (Tianjin University)

  7、SE(3)-Transformers: 3D Roto-Translation EquivariantAttentionNetworks

  Fabian Fuchs (University of Oxford) · Daniel Worrall (University of Amsterdam) · Volker Fischer (Robert Bosch GmbH, Bosch Center for Artificial Intelligence) · Max Welling (University of Amsterdam / Qualcomm AI Research)

  8、ComplementaryAttentionSelf-Distillation for Weakly-Supervised Object Detection

  Zeyi Huang (carnegie mellon university) · Yang Zou (Carnegie Mellon University) · B. V. K. Vijaya Kumar (CMU, USA) · Dong Huang (Carnegie Mellon University)

  9、Modern Hopfield Networks andAttentionfor Immune Repertoire Classification

  Michael Widrich (LIT AI Lab / University Linz) · Bernhard Schfl (JKU Linz) · Milena Pavlovi (Department of Informatics, University of Oslo) · Hubert Ramsauer (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria) · Lukas Gruber (Johannes Kepler University) · Markus Holzleitner (LIT AI Lab / University Linz) · Johannes Brandstetter (LIT AI Lab / University Linz) · Geir Kjetil Sandve (Department of Informatics, University of Oslo) · Victor Greiff (Department of Immunology, University of Oslo) · Sepp Hochreiter (LIT AI Lab / University Linz / IARAI) · Günter Klambauer (LIT AI Lab / University Linz)

  10、Untangling tradeoffs between recurrence andself-attentionin artificial neural networks

  Giancarlo Kerg (MILA) · Bhargav Kanuparthi (Montreal Institute for Learning Algorithms) · Anirudh Goyal ALIAS PARTH GOYAL (Université de Montréal) · Kyle Goyette (University of Montreal) · Yoshua Bengio (Mila / U. Montreal) · Guillaume Lajoie (Mila, Université de Montréal)

  11、RATT: RecurrentAttentionto Transient Tasks for Continual Image Captioning

  Riccardo Del Chiaro (University of Florence) · Bartomiej Twardowski (Computer Vision Center, UAB) · Andrew D Bagdanov (University of Florence) · Joost van de Weijer (Computer Vision Center Barcelona)

  12、Multi-Task Temporal ShiftAttentionNetworks for On-Device Contactless Vitals Measurement

  Xin Liu (University of Washington ) · Josh Fromm (OctoML) · Shwetak Patel (University of Washington) · Daniel McDuff (Microsoft Research)

  13、SAC: Accelerating and StructuringSelf-Attentionvia Sparse Adaptive Connection

  Xiaoya Li (Shannon.AI) · Yuxian Meng (Shannon.AI) · Mingxin Zhou (Shannon.AI) · Qinghong Han (Shannon.AI) · Fei Wu (Zhejiang University) · Jiwei Li (Shannon.AI)

  14、Fast Transformers with ClusteredAttention

  Apoorv Vyas (Idiap Research Institute) · Angelos Katharopoulos (Idiap) · Franois Fleuret (University of Geneva)

  15、Sparse and ContinuousAttentionMechanisms

  André Martins () · Marcos Treviso (Instituto de Telecomunicacoes) · António Farinhas (Instituto Superior Técnico) · Vlad Niculae (Instituto de Telecomunicaes) · Mario Figueiredo (University of Lisbon) · Pedro Aguiar (Instituto Superior Técnico)

  16、Learning to Execute Programs with Instruction PointerAttentionGraph Neural Networks

  David Bieber (Google Brain) · Charles Sutton (Google) · Hugo Larochelle (Google Brain) · Daniel Tarlow (Google Brain)

  17、Neural encoding with visualattention

  Meenakshi Khosla (Cornell University) · Gia Ngo (Cornell University) · Keith Jamison (Cornell University) · Amy Kuceyeski (Cornell University) · Mert Sabuncu (Cornell)

  18、Deep Reinforcement Learning with Stacked HierarchicalAttentionfor Text-based Games

  Yunqiu Xu (University of Technology Sydney) · Meng Fang (Tencent) · Ling Chen (" University of Technology, Sydney, Australia") · Yali Du (University College London) · Joey Tianyi Zhou (IHPC, A*STAR) · Chengqi Zhang (University of Technology Sydney)

  19、Object-Centric Learning with SlotAttention

  Francesco Locatello (ETH Zürich - MPI Tübingen) · Dirk Weissenborn (Google) · Thomas Unterthiner (Google Research, Brain Team) · Aravindh Mahendran (Google) · Georg Heigold (Google) · Jakob Uszkoreit (Google, Inc.) · Alexey Dosovitskiy (Google Research) · Thomas Kipf (Google Research)

  20、SMYRF - Efficientattentionusing asymmetric clustering

  Giannis Daras (National Technical University of Athens) · Nikita Kitaev (University of California, Berkeley) · Augustus Odena (Google Brain) · Alexandros Dimakis (University of Texas, Austin)

  21、Focus ofAttentionImproves Information Transfer in Visual Features

  Matteo Tiezzi (University of Siena) · Stefano Melacci (University of Siena) · Alessandro Betti (University of Siena) · Marco Maggini (University of Siena) · Marco Gori (University of Siena)

  22、AttendLight: UniversalAttention-Based Reinforcement Learning Model for Traffic Signal Control

  Afshin Oroojlooy (SAS Institute, Inc) · Mohammadreza Nazari (SAS Institute Inc.) · Davood Hajinezhad (SAS Institute Inc.) · Jorge Silva (SAS)

  23、Multi-agent Trajectory Prediction with Fuzzy QueryAttention

  Nitin Kamra (University of Southern California) · Hao Zhu (Peking University) · Dweep Kumarbhai Trivedi (University of Southern California) · Ming Zhang (Peking University) · Yan Liu (University of Southern California)

  24、Limits to Depth Efficiencies ofSelf-Attention

  Yoav Levine (HUJI) · Noam Wies (Hebrew University of Jerusalem) · Or Sharir (Hebrew University of Jerusalem) · Hofit Bata (Hebrew University of Jerusalem) · Amnon Shashua (Hebrew University of Jerusalem)

  25、Improving Natural Language Processing Tasks with Human Gaze-Guided NeuralAttention

  Ekta Sood (University of Stuttgart, Simtech ) · Simon Tannert (Institute for Natural Language Processing, University of Stuttgart) · Philipp Mueller (VIS, University of Stuttgart) · Andreas Bulling (University of Stuttgart

  3、Transformer:14篇

  1、FastTransformerswith Clustered Attention

  Apoorv Vyas (Idiap Research Institute) · Angelos Katharopoulos (Idiap)· Franois Fleuret (University of Geneva)

  2、DeepTransformerswith Latent Depth

  Xian Li (Facebook) · Asa Cooper Stickland (University of Edinburgh) · Yuqing Tang (Facebook AI) · Xiang Kong (Carnegie Mellon University)

  3、CrossTransformers: spatially-aware few-shot transfer

  Carl Doersch (DeepMind) · Ankush Gupta (DeepMind) · Andrew Zisserman (DeepMind & University of Oxford)

  4、SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks

  Fabian Fuchs (University of Oxford) · Daniel Worrall (University of Amsterdam) · Volker Fischer (Robert Bosch GmbH, Bosch Center for Artificial Intelligence) · Max Welling (University of Amsterdam / Qualcomm AI Research)

  5、Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

  Zihang Dai (Carnegie Mellon University) · Guokun Lai (Carnegie Mellon University) · Yiming Yang (CMU) · Quoc V Le (Google)

  6、Adversarial SparseTransformerfor Time Series Forecasting

  Sifan Wu (Tsinghua University) · Xi Xiao (Tsinghua University) · Qianggang Ding (Tsinghua University) · Peilin Zhao (Tencent AI Lab) · Ying Wei (Tencent AI Lab) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)

  7、Accelerating Training ofTransformer-Based Language Models with Progressive Layer Dropping

  Minjia Zhang (Microsoft) · Yuxiong He (Microsoft)

  8、COOT: Cooperative HierarchicalTransformerfor Video-Text Representation Learning

  Mohammadreza Zolfaghari (University of Freiburg) · Simon Ging (Uni Freiburg) · Hamed Pirsiavash (University of Maryland, Baltimore County) · Thomas Brox (University of Freiburg)

  9、Cascaded Text Generation with MarkovTransformers

  Yuntian Deng (Harvard University) · Alexander Rush (Cornell University)

  10、GROVER: Self-Supervised Message PassingTransformeron Large-scale Molecular Graphs

  Yu Rong (Tencent AI Lab) · Yatao Bian (Tencent AI Lab) · Tingyang Xu (Tencent AI Lab) · Weiyang Xie (Tencent AI Lab) · Ying WEI (Tencent AI Lab) · Wenbing Huang (Tsinghua University) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)

  11、Learning to Communicate in Multi-Agent Systems viaTransformer-Guided Program Synthesis

  Jeevana Priya Inala (MIT) · Yichen Yang (MIT) · James Paulos (University of Pennsylvania) · Yewen Pu (MIT) · Osbert Bastani (University of Pennysylvania) · Vijay Kumar (University of Pennsylvania) · Martin Rinard (MIT) · Armando Solar-Lezama (MIT)

  12、Measuring Systematic Generalization in Neural Proof Generation withTransformers

  Nicolas Gontier (Mila, Polytechnique Montréal) · Koustuv Sinha (McGill University / Mila / FAIR) · Siva Reddy (McGill University) · Chris Pal (Montreal Institute for Learning Algorithms, cole Polytechnique, Université de Montréal)

  13、O(n)Connections are Expressive Enough: Universal Approximability of SparseTransformers

  Chulhee Yun (MIT) · Yin-Wen Chang (Google Inc.) · Srinadh Bhojanapalli (Google AI) · Ankit Singh Rawat (Google Research) · Sashank Reddi (Google) · Sanjiv Kumar (Google Research)

  14、MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-TrainedTransformers

  Wenhui Wang (MSRA) · Furu Wei (Microsoft Research Asia) · Li Dong (Microsoft Research) · Hangbo Bao (Harbin Institute of Technology) · Nan Yang (Microsoft Research Asia) · Ming Zhou (Microsoft Research)

  4、预训练:5篇

  1、Pre-trainingvia Paraphrasing

  Mike Lewis (Facebook AI Research) · Marjan Ghazvininejad (Facebook AI Research) · Gargi Ghosh (Facebook) · Armen Aghajanyan (Facebook) · Sida Wang (Facebook AI Research) · Luke Zettlemoyer (University of Washington and Allen Institute for Artificial Intelligence)

  2、Pre-TrainingGraph Neural Networks: A Contrastive Learning Framework with Augmentations

  Yuning You (Texas A&M University) · Tianlong Chen (Unversity of Texas at Austin) · Yongduo Sui (University of Science and Technology of China) · Ting Chen (Google) · Zhangyang Wang (University of Texas at Austin) · Yang Shen (Texas A&M University)

  3、RethinkingPre-trainingand Self-training

  Barret Zoph (Google Brain) · Golnaz Ghiasi (Google) · Tsung-Yi Lin (Google Brain) · Yin Cui (Google) · Hanxiao Liu (Google Brain) · Ekin Dogus Cubuk (Google Brain) · Quoc V Le (Google)

  4、MPNet: Masked and PermutedPre-trainingfor Language Understanding

  Kaitao Song (Nanjing University of Science and technology) · Xu Tan (Microsoft Research) · Tao Qin (Microsoft Research) · Jianfeng Lu (Nanjing University of Science and Technology) · Tie-Yan Liu (Microsoft Research Asia)

  5、Adversarial Contrastive Learning: Harvesting More Robustness from UnsupervisedPre-Training

  Ziyu Jiang (Texas A&M University) · Tianlong Chen (Unversity of Texas at Austin) · Ting Chen (Google) · Zhangyang Wang (University of Texas at Austin)

  3

  CV相关


  目标检测:12篇

  1、A Ranking-based, Balanced Loss Function for Both Classification and Localisation inObject Detection

  Kemal Oksuz (Middle East Technical University) · Baris Can Cam (Roketsan) · Emre Akbas (Middle East Technical University) · Sinan Kalkan (Middle East Technical University)

  2、UWSOD: Toward Fully-Supervised-Level Performance Weakly SupervisedObject Detection

  Yunhang Shen (Xiamen University) · Rongrong Ji (Xiamen University, China) · Zhiwei Chen (Xiamen University) · Yongjian Wu (Tencent Technology (Shanghai) Co.,Ltd) · Feiyue Huang (Tencent)

  3、Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for DenseObject Detection

  Xiang Li (NJUST) · Wenhai Wang (Nanjing University) · Lijun Wu (Sun Yat-sen University) · Shuo Chen (Nanjing University of Science and Technology) · Xiaolin Hu (Tsinghua University) · Jun Li (Nanjing University of Science and Technology) · Jinhui Tang (Nanjing University of Science and Technology) · Jian Yang (Nanjing University of Science and Technology)

  4、Every View Counts: Cross-View Consistency in 3DObject Detectionwith Hybrid-Cylindrical-Spherical Voxelization

  Qi Chen (Johns Hopkins University) · Lin Sun (Samsung, Stanford, HKUST) · Ernest Cheung (Samsung) · Alan Yuille (Johns Hopkins University)

  5、Complementary Attention Self-Distillation for Weakly-SupervisedObject Detection

  Zeyi Huang (carnegie mellon university) · Yang Zou (Carnegie Mellon University) · B. V. K. Vijaya Kumar (CMU, USA) · Dong Huang (Carnegie Mellon University)

  6、Few-Cost SalientObject Detectionwith Adversarial-Paced Learning

  Dingwen Zhang (Xidian University) · HaiBin Tian (Xidian University) · Jungong Han (University of Warwick)

  7、Bridging Visual Representations forObject Detection

  Cheng Chi (University of Chinese Academy of Sciences) · Fangyun Wei (Microsoft Research Asia) · Han Hu (Microsoft Research Asia)

  8、Fine-Grained Dynamic Head forObject Detection

  Lin Song (Xi'an Jiaotong University) · Yanwei Li (The Chinese University of Hong Kong) · Zhengkai Jiang (Institute of Automation,Chinese Academy of Sciences) · Zeming Li (Megvii(Face++) Inc) · Hongbin Sun (Xi'an Jiaotong University) · Jian Sun (Megvii, Face++) · Nanning Zheng (Xi'an Jiaotong University)

  9、Detection as Regression: CertifiedObject Detectionwith Median Smoothing

  Ping-yeh Chiang (University of Maryland, College Park) · Michael Curry (University of Maryland) · Ahmed Abdelkader (University of Maryland, College Park) · Aounon Kumar (University of Maryland, College Park) · John Dickerson (University of Maryland) · Tom Goldstein (University of Maryland)

  10、RepPoints v2: Verification Meets Regression forObject Detection

  Yihong Chen (Peking University) · Zheng Zhang (MSRA) · Yue Cao (Microsoft Research) · Liwei Wang (Peking University) · Stephen Lin (Microsoft Research) · Han Hu (Microsoft Research Asia)

  11、CoADNet: Collaborative Aggregation-and-Distribution Networks for Co-SalientObject Detection

  Qijian Zhang (City University of Hong Kong) · Runmin Cong (Beijing Jiaotong University) · Junhui Hou (City University of Hong Kong, Hong Kong) · Chongyi Li ( Nanyang Technological University) · Yao Zhao (Beijing Jiaotong University)

  12、Restoring Negative Information in Few-ShotObject Detection

  Yukuan Yang (Tsinghua University) · Fangyun Wei (Microsoft Research Asia) · Miaojing Shi (King's College London) · Guoqi Li (Tsinghua University)

  目标分割:3篇

  1、VideoObject Segmentationwith Adaptive Feature Bank and Uncertain-Region Refinement

  Yongqing Liang (Louisiana State University) · Xin Li (Louisiana State University) · Navid Jafari (Louisiana State University) · Jim Chen (Northeastern University)

  2、Make One-Shot VideoObject SegmentationEfficient Again

  Tim Meinhardt (TUM) · Laura Leal-Taixé (TUM)

  3、Delving into the Cyclic Mechanism in Semi-supervised VideoObject Segmentation

  Yuxi Li (Shanghai Jiao Tong University) · Jinlong Peng (Tencent Youtu Lab) · Ning Xu (Adobe Research) · John See (Multimedia University) · Weiyao Lin (Shanghai Jiao Tong university)

  实例分割:两篇

  1、Deep VariationalInstance Segmentation

  Jialin Yuan (Oregon State University) · Chao Chen (Stony Brook University) · Fuxin Li (Oregon State University)

  2、DFIS: Dynamic and FastInstance Segmentation

  Xinlong Wang (University of Adelaide) · Rufeng Zhang (Tongji University) · Tao Kong (Bytedance) · Lei Li (ByteDance AI Lab) · Chunhua Shen (University of Adelaide)

  行人重识别:

  

  4

  各种Learning

  

  1、强化学习:94篇

  1、Reinforcement Learningfor Control with Multiple Frequencies

  Jongmin Lee (KAIST) · ByungJun Lee (KAIST) · Kee-Eung Kim (KAIST)

  2、Reinforcement Learningwith General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension

  Ruosong Wang (Carnegie Mellon University) · Russ Salakhutdinov (Carnegie Mellon University) · Lin Yang (UCLA)

  3、Reinforcement Learningin Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting

  Ziping Xu (University of Michigan) · Ambuj Tewari (University of Michigan)

  4、Reinforcement Learningwith Feedback Graphs

  Christoph Dann (Carnegie Mellon University) · Yishay Mansour (Google) · Mehryar Mohri (Courant Inst. of Math. Sciences & Google Research) · Ayush Sekhari (Cornell University) · Karthik Sridharan (Cornell University)

  5、Reinforcement Learningwith Augmented Data

  Misha Laskin (UC Berkeley) · Kimin Lee (UC Berkeley) · Adam Stooke (UC Berkeley) · Lerrel Pinto (New York University) · Pieter Abbeel (UC Berkeley & covariant.ai) · Aravind Srinivas (UC Berkeley)

  6、Reinforcement Learningwith Combinatorial Actions: An Application to Vehicle Routing

  Arthur Delarue (MIT) · Ross Anderson (Google Research) · Christian Tjandraatmadja (Google)

  7、Breaking the Sample Size Barrier in Model-BasedReinforcement Learningwith a Generative Model

  Gen Li (Tsinghua University) · Yuting Wei (Carnegie Mellon University) · Yuejie Chi (CMU) · Yuantao Gu (Tsinghua University) · Yuxin Chen (Princeton University)

  8、Almost Optimal Model-FreeReinforcement Learningvia Reference-Advantage Decomposition

  Zihan Zhang (Tsinghua University) · Yuan Zhou (UIUC) · Xiangyang Ji (Tsinghua University)

  9、Effective Diversity in Population BasedReinforcement Learning

  Jack Parker-Holder (University of Oxford) · Aldo Pacchiano (UC Berkeley) · Krzysztof M Choromanski (Google Brain Robotics) · Stephen J Roberts (University of Oxford)

  10、A Boolean Task Algebra forReinforcement Learning

  Geraud Nangue Tasse (University of the Witwatersrand) · Steven James (University of the Witwatersrand) · Benjamin Rosman (University of the Witwatersrand / CSIR)

  11、Knowledge Transfer in Multi-TaskDeep Reinforcement Learningfor Continuous Control

  Zhiyuan Xu (Syracuse University) · Kun Wu (Syracuse University) · Zhengping Che (DiDi AI Labs, Didi Chuxing) · Jian Tang (DiDi AI Labs, DiDi Chuxing) · Jieping Ye (Didi Chuxing)

  12、Multi-task BatchReinforcement Learningwith Metric Learning

  Jiachen Li (University of California, San Diego) · Quan Vuong (University of California San Diego) · Shuang Liu (University of California, San Diego) · Minghua Liu (UCSD) · Kamil Ciosek (Microsoft) · Henrik Christensen (UC San Diego) · Hao Su (UCSD)

  13、On the Stability and Convergence of Robust AdversarialReinforcement Learning: A Case Study on Linear Quadratic Systems

  Kaiqing Zhang (University of Illinois at Urbana-Champaign (UIUC)) · Bin Hu (University of Illinois at Urbana-Champaign) · Tamer Basar (University of Illinois at Urbana-Champaign)

  14、Towards Playing Full MOBA Games withDeep Reinforcement Learning

  Deheng Ye (Tencent) · Guibin Chen (Tencent) · Wen Zhang (Tencent) · chen sheng (qq) · Bo Yuan (Tencent) · Bo Liu (Tencent) · Jia Chen (Tencent) · Hongsheng Yu (Tencent) · Zhao Liu (Tencent) · Fuhao Qiu (Tencent AI Lab) · Liang Wang (Tencent) · Tengfei Shi (Tencent) · Yinyuting Yin (Tencent) · Bei Shi (Tencent AI Lab) · Lanxiao Huang (Tencent) · qiang fu (Tencent AI Lab) · Wei Yang (Tencent AI Lab) · Wei Liu (Tencent AI Lab)

  15、Promoting Coordination through Policy Regularization in Multi-AgentDeep Reinforcement Learning

  Julien Roy (Mila) · Paul Barde (Quebec AI institute - Ubisoft La Forge) · Félix G Harvey (Polytechnique Montréal) · Derek Nowrouzezahrai (McGill University) · Chris Pal (MILA, Polytechnique Montréal, Element AI)

  16、Confounding-Robust Policy Evaluation in Infinite-HorizonReinforcement Learning

  Nathan Kallus (Cornell University) · Angela Zhou (Cornell University)

  17、Learning Retrospective Knowledge with ReverseReinforcement Learning

  Shangtong Zhang (University of Oxford) · Vivek Veeriah (University of Michigan) · Shimon Whiteson (University of Oxford)

  18、CombiningDeep Reinforcement Learningand Search for Imperfect-Information Games

  Noam Brown (Facebook AI Research) · Anton Bakhtin (Facebook AI Research) · Adam Lerer (Facebook AI Research) · Qucheng Gong (Facebook AI Research)

  19、POMO: Policy Optimization with Multiple Optima forReinforcement Learning

  Yeong-Dae Kwon (Samsung SDS) · Jinho Choo (Samsung SDS) · Byoungjip Kim (Samsung SDS) · Iljoo Yoon (Samsung SDS) · Youngjune Gwon (Samsung SDS) · Seungjai Min (Samsung SDS)

  20、Self-PacedDeep Reinforcement Learning

  Pascal Klink (TU Darmstadt) · Carlo D'Eramo (TU Darmstadt) · Jan Peters (TU Darmstadt & MPI Intelligent Systems) · Joni Pajarinen (TU Darmstadt)

  21、Efficient Model-BasedReinforcement Learningthrough Optimistic Policy Search and Planning

  Sebastian Curi (ETHz) · Felix Berkenkamp (Bosch Center for Artificial Intelligence) · Andreas Krause (ETH Zurich)

  22、Weakly-SupervisedReinforcement Learningfor Controllable Behavior

  Lisa Lee (CMU / Google Brain / Stanford) · Ben Eysenbach (Carnegie Mellon University) · Russ Salakhutdinov (Carnegie Mellon University) · Shixiang (Shane) Gu (Google Brain) · Chelsea Finn (Stanford)

  23、MOReL: Model-Based OfflineReinforcement Learning

  Rahul Kidambi (Cornell University) · Aravind Rajeswaran (University of Washington) · Praneeth Netrapalli (Microsoft Research) · Thorsten Joachims (Cornell)

  24、Security Analysis of Safe and SeldonianReinforcement LearningAlgorithms

  Pinar Ozisik (UMass Amherst) · Philip Thomas (University of Massachusetts Amherst)

  25、Model-based AdversarialMeta-Reinforcement Learning

  Zichuan Lin (Tsinghua University) · Garrett W. Thomas (Stanford University) · Guangwen Yang (Tsinghua University) · Tengyu Ma (Stanford University)

  26、SafeReinforcement Learningvia Curriculum Induction

  Matteo Turchetta (ETH Zurich) · Andrey Kolobov (Microsoft Research) · Shital Shah (Microsoft) · Andreas Krause (ETH Zurich) · Alekh Agarwal (Microsoft Research)

  27、Conservative Q-Learning for OfflineReinforcement Learning

  Aviral Kumar (UC Berkeley) · Aurick Zhou (University of California, Berkeley) · George Tucker (Google Brain) · Sergey Levine (UC Berkeley)

  28、MunchausenReinforcement Learning

  Nino Vieillard (Google Brain) · Olivier Pietquin (Google Research Brain Team) · Matthieu Geist (Google Brain)

  29、Non-Crossing Quantile Regression for DistributionalReinforcement Learning

  Fan Zhou (Shanghai University of Finance and Economics) · Jianing Wang (Shanghai University of Finance and Economics) · Xingdong Feng (Shanghai University of Finance and Economics)

  30、Online Decision Based Visual Tracking viaReinforcement Learning

  ke Song (Shandong university) · Wei Zhang (Shandong University) · Ran Song (School of Control Science and Engineering, Shandong University) · Yibin Li (Shandong University)

  31、DiscoveringReinforcement LearningAlgorithms

  Junhyuk Oh (DeepMind) · Matteo Hessel (Google DeepMind) · Wojciech Czarnecki (DeepMind) · Zhongwen Xu (DeepMind) · Hado van Hasselt (DeepMind) · Satinder Singh (DeepMind) · David Silver (DeepMind)

  32、Shared Experience Actor-Critic for Multi-AgentReinforcement Learning

  Filippos Christianos (University of Edinburgh) · Lukas Schfer (University of Edinburgh) · Stefano Albrecht (University of Edinburgh)

  33、The LoCA Regret: A Consistent Metric to Evaluate Model-Based Behavior inReinforcement Learning

  Harm Van Seijen (Microsoft Research) · Hadi Nekoei (MILA) · Evan Racah (Mila, Université de Montréal) · Sarath Chandar (Mila / cole Polytechnique de Montréal)

  34、Leverage the Average: an Analysis of KL Regularization inReinforcement Learning

  Nino Vieillard (Google Brain) · Tadashi Kozuno (Okinawa Institute of Science and Technology) · Bruno Scherrer (INRIA) · Olivier Pietquin (Google Research Brain Team) · Remi Munos (DeepMind) · Matthieu Geist (Google Brain)

  35、Task-agnostic Exploration inReinforcement Learning

  Xuezhou Zhang (UW-Madison) · Yuzhe Ma (University of Wisconsin-Madison) · Adish Singla (MPI-SWS)

  36、Generating Adjacency-Constrained Subgoals in HierarchicalReinforcement Learning

  Tianren Zhang (Tsinghua University) · Shangqi Guo (Tsinghua University) · Tian Tan (Stanford University) · Xiaolin Hu (Tsinghua University) · Feng Chen (Tsinghua University)

  37、Storage Efficient and Dynamic Flexible Runtime Channel Pruning via DeepReinforcement Learning

  Jianda Chen (Nanyang Technological University) · Shangyu Chen (Nanyang Technological University, Singapore) · Sinno Jialin Pan (Nanyang Technological University, Singapore)

  38、Multi-TaskReinforcement Learningwith Soft Modularization

  Ruihan Yang (UC San Diego) · Huazhe Xu (UC Berkeley) · YI WU (UC Berkeley) · Xiaolong Wang (UCSD/UC Berkeley)

  39、Weighted QMIX: Improving Monotonic Value Function Factorisation for Deep Multi-AgentReinforcement Learning

  Tabish Rashid (University of Oxford) · Gregory Farquhar (University of Oxford) · Bei Peng (University of Oxford) · Shimon Whiteson (University of Oxford)

  40、MDP Homomorphic Networks: Group Symmetries inReinforcement Learning

  Elise van der Pol (University of Amsterdam) · Daniel Worrall (University of Amsterdam) · Herke van Hoof (University of Amsterdam) · Frans Oliehoek (TU Delft) · Max Welling (University of Amsterdam / Qualcomm AI Research)

  41、On Efficiency in HierarchicalReinforcement Learning

  Zheng Wen (DeepMind) · Doina Precup (DeepMind) · Morteza Ibrahimi (DeepMind) · Andre Barreto (DeepMind) · Benjamin Van Roy (Stanford University) · Satinder Singh (DeepMind)

  42、Variational Policy Gradient Method forReinforcement Learningwith General Utilities

  Junyu Zhang (Princeton University) · Alec Koppel (U.S. Army Research Laboratory) · Amrit Singh Bedi (US Army Research Laboratory) · Csaba Szepesvari (DeepMind / University of Alberta) · Mengdi Wang (Princeton University)

  43、Model-basedReinforcement Learningfor Semi-Markov Decision Processes with Neural ODEs

  Jianzhun Du (Harvard University) · Joseph Futoma (Harvard University) · Finale Doshi-Velez (Harvard)

  44、DisCor: Corrective Feedback inReinforcement Learningvia Distribution Correction

  Aviral Kumar (UC Berkeley) · Abhishek Gupta (University of California, Berkeley) · Sergey Levine (UC Berkeley)

  45、NeurosymbolicReinforcement Learningwith Formally Verified Exploration

  Greg Anderson (University of Texas at Austin) · Abhinav Verma (Rice University) · Isil Dillig (UT Austin) · Swarat Chaudhuri (The University of Texas at Austin)

  46、Generalized Hindsight forReinforcement Learning

  Alexander Li (UC Berkeley) · Lerrel Pinto (New York University) · Pieter Abbeel (UC Berkeley & covariant.ai)

  47、Meta-GradientReinforcement Learningwith an Objective Discovered Online

  Zhongwen Xu (DeepMind) · Hado van Hasselt (DeepMind) · Matteo Hessel (Google DeepMind) · Junhyuk Oh (DeepMind) · Satinder Singh (DeepMind) · David Silver (DeepMind)

  48、TorsionNet: AReinforcement LearningApproach to Sequential Conformer Search

  Tarun Gogineni (University of Michigan) · Ziping Xu (University of Michigan) · Exequiel Punzalan (University of Michigan) · Runxuan Jiang (University of Michigan) · Joshua Kammeraad (University of Michigan) · Ambuj Tewari (University of Michigan) · Paul Zimmerman (University of Michigan)

  49、Learning to Dispatch for Job Shop Scheduling via DeepReinforcement Learning

  Cong Zhang (Nanyang Technological University) · Wen Song (Institute of Marine Scinece and Technology, Shandong University) · Zhiguang Cao (National University of Singapore) · Jie Zhang (Nanyang Technological University) · Puay Siew Tan (SIMTECH) · Xu Chi (Singapore Institute of Manufacturing Technology, A-Star)

  50、Is Plug-in Solver Sample-Efficient for Feature-basedReinforcement Learning?

  Qiwen Cui (Peking University) · Lin Yang (UCLA)

  51、Instance-based Generalization inReinforcement Learning

  Martin Bertran (Duke University) · Natalia L Martinez (Duke University) · Mariano Phielipp (Intel AI Labs) · Guillermo Sapiro (Duke University)

  52、Preference-basedReinforcement Learningwith Finite-Time Guarantees

  Yichong Xu (Carnegie Mellon University) · Ruosong Wang (Carnegie Mellon University) · Lin Yang (UCLA) · Aarti Singh (CMU) · Artur Dubrawski (Carnegie Mellon University)

  53、Learning to Decode:Reinforcement Learningfor Decoding of Sparse Graph-Based Channel Codes

  Salman Habib (New Jersey Institute of Tech) · Allison Beemer (New Jersey Institute of Technology) · Joerg Kliewer (New Jersey Institute of Technology)

  54、BAIL: Best-ActionImitation Learningfor Batch DeepReinforcement Learning

  Xinyue Chen (NYU Shanghai) · Zijian Zhou (NYU Shanghai) · Zheng Wang (NYU Shanghai) · Che Wang (New York University) · Yanqiu Wu (New York University) · Keith Ross (NYU Shanghai)

  55、Task-Agnostic OnlineReinforcement Learningwith an Infinite Mixture of Gaussian Processes

  Mengdi Xu (Carnegie Mellon University) · Wenhao Ding (Carnegie Mellon University) · Jiacheng Zhu (Carnegie Mellon University) · ZUXIN LIU (Carnegie Mellon University) · Baiming Chen (Tsinghua University) · Ding Zhao (Carnegie Mellon University)

  56、On Reward-FreeReinforcement Learningwith Linear Function Approximation

  Ruosong Wang (Carnegie Mellon University) · Simon Du (Institute for Advanced Study) · Lin Yang (UCLA) · Russ Salakhutdinov (Carnegie Mellon University)

  57、Near-OptimalReinforcement Learningwith Self-Play

  Yu Bai (Salesforce Research) · Chi Jin (Princeton University) · Tiancheng Yu (MIT )

  58、Robust Multi-AgentReinforcement Learningwith Model Uncertainty

  Kaiqing Zhang (University of Illinois at Urbana-Champaign (UIUC)) · TAO SUN (Amazon.com) · Yunzhe Tao (Amazon Artificial Intelligence) · Sahika Genc (Amazon Artificial Intelligence) · Sunil Mallya (Amazon AWS) · Tamer Basar (University of Illinois at Urbana-Champaign)

  59、Towards Minimax OptimalReinforcement Learningin Factored Markov Decision Processes

  Yi Tian (MIT) · Jian Qian (MIT) · Suvrit Sra (MIT)

  60、Scalable Multi-AgentReinforcement Learningfor Networked Systems with Average Reward

  Guannan Qu (California Institute of Technology) · Yiheng Lin (California Institute of Technology) · Adam Wierman (California Institute of Technology) · Na Li (Harvard University)

  61、Constrained episodicreinforcement learningin concave-convex and knapsack settings

  Kianté Brantley (The University of Maryland College Park) · Miro Dudik (Microsoft Research) · Thodoris Lykouris (Microsoft Research NYC) · Sobhan Miryoosefi (Princeton University) · Max Simchowitz (Berkeley) · Aleksandrs Slivkins (Microsoft Research) · Wen Sun (Microsoft Research NYC)

  62、Sample EfficientReinforcement Learningvia Low-Rank Matrix Estimation

  Devavrat Shah (Massachusetts Institute of Technology) · Dogyoon Song (Massachusetts Institute of Technology) · Zhi Xu (MIT) · Yuzhe Yang (MIT)

  63、Trajectory-wise Multiple Choice Learning for Dynamics Generalization inReinforcement Learning

  Younggyo Seo (KAIST) · Kimin Lee (UC Berkeley) · Ignasi Clavera Gilaberte (UC Berkeley) · Thanard Kurutach (University of California Berkeley) · Jinwoo Shin (KAIST) · Pieter Abbeel (UC Berkeley & covariant.ai)

  64、Cooperative HeterogeneousDeep Reinforcement Learning

  Han Zheng (UTS) · Pengfei Wei (National University of Singapore) · Jing Jiang (University of Technology Sydney) · Guodong Long (University of Technology Sydney (UTS)) · Qinghua Lu (Data61, CSIRO) · Chengqi Zhang (University of Technology Sydney)

  65、Implicit DistributionalReinforcement Learning

  Yuguang Yue (University of Texas at Austin) · Zhendong Wang (University of Texas, Austin) · Mingyuan Zhou (University of Texas at Austin)

  66、Efficient Exploration of Reward Functions in InverseReinforcement Learningvia Bayesian Optimization

  Sreejith Balakrishnan (National University of Singapore) · Quoc Phong Nguyen (National University of Singapore) · Bryan Kian Hsiang Low (National University of Singapore) · Harold Soh (National University Singapore)

  67、EPOC: A Provably Correct Policy Gradient Approach toReinforcement Learning

  Alekh Agarwal (Microsoft Research) · Mikael Henaff (Microsoft) · Sham Kakade (University of Washington) · Wen Sun (Microsoft Research NYC)

  68、Provably EfficientReinforcement Learningwith Kernel and Neural Function Approximations

  Zhuoran Yang (Princeton) · Chi Jin (Princeton University) · Zhaoran Wang (Northwestern University) · Mengdi Wang (Princeton University) · Michael Jordan (UC Berkeley)

  69、Decoupled Policy Gradient Methods for CompetitiveReinforcement Learning

  Constantinos Daskalakis (MIT) · Dylan Foster (MIT) · Noah Golowich (Massachusetts Institute of Technology)

  70、Upper Confidence Primal-DualReinforcement Learningfor CMDP with Adversarial Loss

  Shuang Qiu (University of Michigan) · Xiaohan Wei (University of Southern California) · Zhuoran Yang (Princeton) · Jieping Ye (University of Michigan) · Zhaoran Wang (Northwestern University)

  71、Improving Generalization inReinforcement Learningwith Mixture Regularization

  KAIXIN WANG (National University of Singapore) · Bingyi Kang (National University of Singapore) · Jie Shao (Fudan University) · Jiashi Feng (National University of Singapore)

  72、A game-theoretic analysis of networked system control for common-pool resource management using multi-agentreinforcement learning

  Arnu Pretorius (InstaDeep) · Scott Cameron (Instadeep) · Elan van Biljon (Stellenbosch University) · Thomas Makkink (InstaDeep) · Shahil Mawjee (InstaDeep) · Jeremy du Plessis (University of Cape Town) · Jonathan Shock (University of Cape Town) · Alexandre Laterre (InstaDeep) · Karim Beguir (InstaDeep)

  73、Deep Reinforcement Learningwith Stacked Hierarchical Attention for Text-based Games

  Yunqiu Xu (University of Technology Sydney) · Meng Fang (Tencent) · Ling Chen (" University of Technology, Sydney, Australia") · Yali Du (University College London) · Joey Tianyi Zhou (IHPC, A*STAR) · Chengqi Zhang (University of Technology Sydney)

  74、Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

  Parameswaran Kamalaruban (EPFL) · Yu-Ting Huang (EPFL) · Ya-Ping Hsieh (EPFL) · Paul Rolland (EPFL) · Cheng Shi (Unversity of Basel) · Volkan Cevher (EPFL)

  75、Interferobot: aligning an optical interferometer by areinforcement learningagent

  Dmitry Sorokin (Russian Quantum Center) · Alexander Ulanov (Russian Quantum Center) · Ekaterina Sazhina (Russian Quantum Center) · Alexander Lvovsky (Oxford University)

  76、Risk-SensitiveReinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret

  Yingjie Fei (Cornell University) · Zhuoran Yang (Princeton) · Yudong Chen (Cornell University) · Zhaoran Wang (Northwestern University) · Qiaomin Xie (Cornell University)

  77、Expert-SupervisedReinforcement Learningfor Offline Policy Learning and Evaluation

  Aaron Sonabend (Harvard University) · Junwei Lu () · Leo Anthony Celi (Massachusetts Institute of Technology) · Tianxi Cai (Harvard School of Public Health) · Peter Szolovits (MIT)

  78、Dynamic allocation of limited memory resources inreinforcement learning

  Nisheet Patel (University of Geneva) · Luigi Acerbi (University of Helsinki) · Alexandre Pouget (University of Geneva)

  79、AttendLight: Universal Attention-BasedReinforcement LearningModel for Traffic Signal Control

  Afshin Oroojlooy (SAS Institute, Inc) · Mohammadreza Nazari (SAS Institute Inc.) · Davood Hajinezhad (SAS Institute Inc.) · Jorge Silva (SAS)

  80、Sample-EfficientReinforcement Learningof Undercomplete POMDPs

  Chi Jin (Princeton University) · Sham Kakade (University of Washington) · Akshay Krishnamurthy (Microsoft) · Qinghua Liu (Princeton University)

  81、RL Unplugged: A Collection of Benchmarks for OfflineReinforcement Learning

  Ziyu Wang (Deepmind) · Caglar Gulcehre (Deepmind) · Alexander Novikov (DeepMind) · Thomas Paine (DeepMind) · Sergio Gómez (DeepMind) · Konrad Zolna (DeepMind) · Rishabh Agarwal (Google Research, Brain Team) · Josh Merel (DeepMind) · Daniel Mankowitz (DeepMind) · Cosmin Paduraru (DeepMind) · Gabriel Dulac-Arnold (Google Research) · Jerry Li (Google) · Mohammad Norouzi (Google Brain) · Matthew Hoffman (DeepMind) · Nicolas Heess (Google DeepMind) · Nando de Freitas (DeepMind)

  82、A local temporal difference code for distributionalreinforcement learning

  Pablo Tano (University of Geneva) · Peter Dayan (Max Planck Institute for Biological Cybernetics) · Alexandre Pouget (University of Geneva)

  83、The Value Equivalence Principle for Model-BasedReinforcement Learning

  Christopher Grimm (University of Michigan) · Andre Barreto (DeepMind) · Satinder Singh (DeepMind) · David Silver (DeepMind)

  84、Steady State Analysis of EpisodicReinforcement Learning

  Huang Bojun (Rakuten Institute of Technology)

  85、Information-theoretic Task Selection forMeta-Reinforcement Learning

  Ricardo Luna Gutierrez (University of Leeds) · Matteo Leonetti (University of Leeds)

  86、A Unifying View of Optimism in EpisodicReinforcement Learning

  Gergely Neu (Universitat Pompeu Fabra) · Ciara Pike-Burke (Imperial College London)

  87、AcceleratingReinforcement Learningthrough GPU Atari Emulation

  Steven Dalton (Nvidia) · iuri frosio (nvidia)

  88、Robust DeepReinforcement Learningagainst Adversarial Perturbations on State Observations

  Huan Zhang (UCLA) · Hongge Chen (MIT) · Chaowei Xiao (University of Michigan, Ann Arbor) · Bo Li (UIUC) · mingyan liu (university of Michigan, Ann Arbor) · Duane Boning (Massachusetts Institute of Technology) · Cho-Jui Hsieh (UCLA)

  89、Bridging Imagination and Reality for Model-BasedDeep Reinforcement Learning

  Guangxiang Zhu (Tsinghua university) · Minghao Zhang (Tsinghua University) · Honglak Lee (Google / U. Michigan) · Chongjie Zhang (Tsinghua University)

  90、Adaptive Discretization for Model-BasedReinforcement Learning

  Sean Sinclair (Cornell University) · Tianyu Wang (Duke University) · Gauri Jain (Cornell University) · Siddhartha Banerjee (Cornell University) · Christina Yu (Cornell University)

  91、Provably Good Batch Off-PolicyReinforcement LearningWithout Great Exploration

  Yao Liu (Stanford University) · Adith Swaminathan (Microsoft Research) · Alekh Agarwal (Microsoft Research) · Emma Brunskill (Stanford University)

  92、Provably adaptivereinforcement learningin metric spaces

  Tongyi Cao (University of Massachusetts Amherst) · Akshay Krishnamurthy (Microsoft)

  93、Stochastic Latent Actor-Critic:Deep Reinforcement Learningwith a Latent Variable Model

  Alex Lee (UC Berkeley) · Anusha Nagabandi (UC Berkeley) · Pieter Abbeel (UC Berkeley & covariant.ai) · Sergey Levine (UC Berkeley)

  94、InverseReinforcement Learningfrom a Gradient-based Learner

  Giorgia Ramponi (Politecnico di Milano) · Gianluca Drappo (Politecnico di Milano) · Marcello Restelli (Politecnico di Milano)

  2、GAN:21篇

  1、BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

  Thu Nguyen-Phuoc (University of Bath) · Christian Richardt (University of Bath) · Long Mai (Adobe Research) · Yongliang Yang (University of Bath) · Niloy Mitra (University College London)

  2、TaylorGAN: Neighbor-Augmented Policy Update Towards Sample-Efficient Natural Language Generation

  Chun-Hsing Lin (National Taiwan University) · Siang-Ruei Wu (National Taiwan University) · Hung-yi Lee (National Taiwan University) · Yun-Nung Chen (National Taiwan University)

  3、CircleGAN: Generative Adversarial Learning across Spherical Circles

  Woohyeon Shim (Postech) · Minsu Cho (POSTECH)

  4、COT-GAN: Generating Sequential Data via Causal Optimal Transport

  Tianlin Xu (London School of Economics and Political Science) · Wenliang Le (Gatsby Unit, UCL) · Michael Munn (Google) · Beatrice Acciaio (London School of Economics)

  5、HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

  6、GramGAN: Deep 3D Texture Synthesis From 2D Exemplars

  Tiziano Portenier (ETH Zurich) · Siavash Arjomand Bigdeli (CSEM) · Orcun Goksel (ETH Zurich)

  7、ColdGANs: Taming Language GANs with Cautious Sampling Strategies

  Thomas Scialom (reciTAL) · Paul-Alexis Dray (reciTAL) · Sylvain Lamprier (LIP6-UPMC) · Benjamin Piwowarski (LIP6, UPMC / CNRS, Paris, France) · Jacopo Staiano (reciTAL)

  8、PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals

  Henry Charlesworth (University of Warwick) · Giovanni Montana (University of Warwick)

  Jungil Kong (Kakao Enterprise) · Jaehyeon Kim (Kakao Enterprise) · Jaekyoung Bae (Kakao Enterprise)

  9、GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators

  Dingfan Chen (CISPA - Helmholtz Center for Information Security) · Tribhuvanesh Orekondy (Max Planck Institute for Informatics) · Mario Fritz (CISPA Helmholtz Center i.G.)

  10、GANSpace: Discovering Interpretable GAN Controls

  Erik Hrknen (Aalto University) · Aaron Hertzmann (Adobe) · Jaakko Lehtinen (Aalto University & NVIDIA) · Sylvain Paris (Adobe)

  11、GANMemory with No Forgetting

  Chunyuan Li (Microsoft Research) · Miaoyun Zhao (UNC) · Jianqiao Li (Duke University) · Sijia Wang (Duke University) · Lawrence Carin (Du...

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!