Why is the complexity of BFS O(V+E) instead of O(E)? [duplicate]

社会主义新天地 提交于 2020-08-19 11:11:13

问题


This is a generic BFS implementation:

For a connected graph with V nodes and E total number of edges, we know that every edge will be considered twice in the inner loop. So if the total number of iterations in the inner loop of BFS is going to be 2 * number of edges E, isn't the runtime going to be O(E) instead?


回答1:


This is a case where one needs to look a little deeper at the implementation. In particular, how do I determine if a node is visited or not?

The traditional algorithm does this by coloring the vertices. All vertices are colored white at first, and they get colored black as they are visited. Thus visitation can be determined simply by looking at the color of the vertex. If you use this approach, then you have to do O(V) worth of initialization work setting the color of each vertex to white at the start.

You could manage your colors differently. You could maintain a data structure containing all visited nodes. If you did this, you could avoid the O(V) initialization cost. However, you will pay that cost elsewhere in the data structure. For example, if you stored them all in a balanced tree, each if w is not visited now costs O(log V).

This obviously gives you a choice. You can have O(V+E) using the traditional coloring approach, or you can have O(E log V) by storing this information in your own data structure.

You specify a connected graph in your problem. In this case, O(V+E) == O(E) because the number of vertices can never be more than E+1. However, the time complexity of BFS is typically given with respect to an arbitrary graph, which can include a very sparse graph.

If a graph is sufficiently sparse (say, a million vertices and five edges), the cost of initialization may be great enough that you want to switch to a O(E ln V) algorithm. However, these are pretty rare in a practical setting. In a practical setting, the speed of the traditional approach (giving each vertex a color) is just so blinding fast compared to the more fancy data structures that you choose this traditional coloring scheme for everything except the most extraordinarily sparse graphs.

If you maintained a dedicated color property on your vertices with an invariant rule that all nodes are black between algotihm invocations, you could drop the cost to O(E) by doing each BFS twice. On your first pass, you could set them all to white, and then do a second pass to turn them all black. If you had a very sparse graph, this could be more efficient.




回答2:


Well, let's break it up into easy pieces...

  1. You've kept a visited array, and by looking it up, you decide whether to push a node into the queue or not. Once visited, you don't push it again. So, how many nodes get pushed into the queue: (of course) V nodes. And it's complexity is O(V).

  2. Now, each time, you take out a node from queue and visit all of its neighboring nodes. Now, following this way, for all of V nodes, how many node you'll come across. Well, it's the number of edges if the graph is unidirectional, or, 2 * number of edges if the graph is bidirectional. So, the complexity would be O(E) for unidirectional and O(2 * E) for bidirectional.

So, the ultimate(i.e. total) complexity would be O(V + E) or O(V + 2 * E) or generally, we may say O(v + E).




回答3:


Because there might be graph having edges less than number of vertices. Consider this graph:

1 ---- 2
|
|
3 ---- 4

There are 4 vertices but only 3 edges, and in BFS you have to traverse each and every vertex. Thatswhy time complexity is O(V+E) as it considers both V as well as E.



来源:https://stackoverflow.com/questions/63321659/why-is-the-complexity-of-bfs-ove-instead-of-oe

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!