python网络编程(进程与多线程)

梦想的初衷 提交于 2020-08-17 00:00:14

multiprocessing模块

  由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。

  multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。

  此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。

  multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。

  Process类的介绍

Process(target = talk,args = (conn,addr))
#由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)

  group参数未使用,值始终为None,

  target表示调用对象,即子进程要执行的任务,

  args表示调用对象的位置参数元组,args=(1,2,'egon',),

  kwargs表示调用对象的字典,kwargs={'name':'egon','age':18},

  name为子进程的名称。

  方法:p.start():启动进程,并调用该子进程中的p.run() 

  p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法  

  p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁

  p.is_alive():如果p仍然运行,返回True

  p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

  属性:p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置

  p.name:进程的名称

  p.pid:进程的pid,每个进程都会开启一个python解释器去完成,对应一个pid号。

from multiprocessing import Process
import os
import time
def info(name):


    print("name:",name)
    print('parent process:', os.getppid())
    print('process id:', os.getpid())
    print("------------------")
    time.sleep(1)

def foo(name):

    info(name)

if __name__ == '__main__':

    info('main process line')


    p1 = Process(target=info, args=('alvin',))
    p2 = Process(target=foo, args=('egon',))
    p1.start()
    p2.start()

    p1.join()
    p2.join()

    print("ending")
运行结果:

name: main process line
parent process: 7904#pycharm的进程pid
process id: 11424#这个是python解释器的pid
------------------
name: alvin
parent process: 11424
process id: 9628
------------------
name: egon
parent process: 11424
process id: 9276
------------------
ending
pid

  p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束。

  p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功。

  使用方式分为直接调用和继承类方式调用:

from multiprocessing import Process
import time,random
import os
def piao(name):
    print(os.getppid(),os.getpid())
    print('%s is piaoing' %name)
    time.sleep(random.randint(1,3))
    print('%s is piao end' %name)
if __name__ == '__main__':
    p1=Process(target=piao,kwargs={'name':'alex',})
    p2=Process(target=piao,args=('wupeiqi',))
    p3=Process(target=piao,kwargs={'name':'yuanhao',})
    p1.start()
    p2.start()
    p3.start()
    print('主进程',os.getpid())
#os.getppid(),os.getpid()
#父进程id,当前进程id
开启进程方式一
from multiprocessing import Process
import time,random
import os
class Piao(Process):
    def __init__(self,name):
        super().__init__()
        self.name=name
    def run(self):
        print(os.getppid(),os.getpid())
        print('%s is piaoing' %self.name)
        # time.sleep(random.randint(1,3))
        print('%s is piao end' %self.name)
if __name__ == '__main__':
    p1=Piao('alex')
    p2=Piao('wupeiqi')
    p3=Piao('yuanhao')

    p1.start()
    p2.start()
    p3.start()
    print('主进程',os.getpid(),os.getppid())
开启进程方式二

协程函数

  协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:

  协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

import time

"""
传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。
如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高。
"""
# 注意到consumer函数是一个generator(生成器):
# 任何包含yield关键字的函数都会自动成为生成器(generator)对象

def consumer():
    r = ''
    while True:
        # 3、consumer通过yield拿到消息,处理,又通过yield把结果传回;
        #    yield指令具有return关键字的作用。然后函数的堆栈会自动冻结(freeze)在这一行。
        #    当函数调用者的下一次利用next()或generator.send()或for-in来再次调用该函数时,
        #    就会从yield代码的下一行开始,继续执行,再返回下一次迭代结果。通过这种方式,迭代器可以实现无限序列和惰性求值。
        n = yield r
        if not n:
            return
        print('[CONSUMER] ←← Consuming %s...' % n)
        time.sleep(1)
        r = '200 OK'
def produce(c):
    # 1、首先调用c.next()启动生成器
    next(c)
    n = 0
    while n < 5:
        n = n + 1
        print('[PRODUCER] →→ Producing %s...' % n)
        # 2、然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
        cr = c.send(n)
        # 4、produce拿到consumer处理的结果,继续生产下一条消息;
        print('[PRODUCER] Consumer return: %s' % cr)
    # 5、produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
    c.close()
if __name__=='__main__':
    # 6、整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
    c = consumer()
    produce(c)
    
    
'''
result:

[PRODUCER] →→ Producing 1...
[CONSUMER] ←← Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 2...
[CONSUMER] ←← Consuming 2...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 3...
[CONSUMER] ←← Consuming 3...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 4...
[CONSUMER] ←← Consuming 4...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] →→ Producing 5...
[CONSUMER] ←← Consuming 5...
[PRODUCER] Consumer return: 200 OK
'''
协程函数
from greenlet import greenlet
 
def test1():
    print (12)
    gr2.switch()
    print (34)
    gr2.switch()
 
def test2():
    print (56)
    gr1.switch()
    print (78)
 
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
greenlet

  gevent模块实现协程

  Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。

  gevent是第三方库,通过greenlet实现协程,其基本思想是:

  当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

  由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:

import gevent
import time

def foo():
    print("running in foo")
    gevent.sleep(2)
    print("switch to foo again")

def bar():
    print("switch to bar")
    gevent.sleep(5)
    print("switch to bar again")

start=time.time()

gevent.joinall(
    [gevent.spawn(foo),
    gevent.spawn(bar)]
)

print(time.time()-start)
gevent示例

  实际代码里,我们不会用gevent.sleep()去切换协程,而是在执行到IO操作时,gevent自动切换,代码如下:

from gevent import monkey
monkey.patch_all()
import gevent
from urllib import request
import time

def f(url):
    print('GET: %s' % url)
    resp = request.urlopen(url)
    data = resp.read()
    print('%d bytes received from %s.' % (len(data), url))

start=time.time()

gevent.joinall([
        gevent.spawn(f, 'https://itk.org/'),
        gevent.spawn(f, 'https://www.github.com/'),
        gevent.spawn(f, 'https://zhihu.com/'),
])

# f('https://itk.org/')这是分别爬,串行的操作
# f('https://www.github.com/')
# f('https://zhihu.com/')

print(time.time()-start)
协程在爬网页的I/O

I/O模型

  一共有五种类型的I/O模型:1.阻塞I/O:全程阻塞,2.非阻塞I/O:发送多次系统调用,3.IO多路复用(监听多个连接)4.异步IO5.驱动信号

  对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:

  •  等待数据准备 (Waiting for the data to be ready)
  •  将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

  1.阻塞I/O

  在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

  这两个阶段都是阻塞的,在进行的时候不可以做其他的任务,所以是全程阻塞。

  non-blocking IO(非阻塞IO)

import socket
import time

sock=socket.socket()

sock.bind(("127.0.0.1",8800))

sock.listen(5)

sock.setblocking(False)#设置为非阻塞

while 1:
    try:
        conn,addr=sock.accept()   # 阻塞等待链接
    except Exception as e:
        print(e)
        time.sleep(3)
非阻塞I/Oserver
import time
import socket
sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

while True:
    sk.connect(('127.0.0.1',6667))
    print("hello")
    sk.sendall(bytes("hello","utf8"))
    time.sleep(2)
    break
client

  copy data的时候是阻塞的,等待数据时在监听,数据不来就做其他的事,数据来了就复制数据。

  优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。

  缺点:任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。并且数据也不是实时的,在数据没来时进行某个操作,操作期间数据来了,但是他不能立刻去copy data。

  IO multiplexing(IO多路复用)

  IO multiplexing就是select,epoll实现的。有些地方也称这种IO方式为event driven IO。select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

  当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。

import socket
import time

import select
sock=socket.socket()

sock.bind(("127.0.0.1",8800))

sock.listen(5)


sock.setblocking(False)
inputs=[sock,]

print("sock",sock)

while 1:
    r,w,e=select.select(inputs,[],[])  # 监听有变化的套接字 inputs=[sock,conn1,conn2,conn3..]
    print("r",r)#select就卡在这一有链接来就开始操作,没链接就block阻塞
    print("r",w)
    print("r",e)
    for obj in r:   # 第一次 [sock,]  第二次 #[conn1,]
        if obj==sock:#sock是用户来连接我我有变化,将新的链接加入
            print('change')
            conn,addr=obj.accept()
            inputs.append(conn)   #  inputs=[sock,conn]

        else:#客户端传来消息,那么我的conn发生变化,进行数据交互
            data=obj.recv(1024)
            print(data.decode("utf8"))
            send_data=input(">>>")
            obj.send(send_data.encode("utf8"))
I/O多路复用并发server
import socket

sock=socket.socket()


sock.connect(("127.0.0.1",8800))

while 1:

     data=input("input>>>")
     sock.send(data.encode("utf8"))
     rece_data=sock.recv(1024)
     print(rece_data.decode("utf8"))

sock.close()
client

  select仅仅使用I/O多路复用就完成了并发。一开始只监听sock,一有客户端来连接将conn加入监听,然后传数据过来就只监听conn传数据,简单来说select只监听有变化的套接字,没有变化的套接字传输还是按照之前学的套接字之间的数据传输。

  结论: select的优势在于可以处理多个连接,不适用于单个连接。

  Asynchronous I/O(异步IO)

  全程无阻塞,异步就是用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

  到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
  调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

  各个IO Model的比较如图所示:

  non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

  selectors模块(基于select机制实现的IO多路复用)

  这个模块已经封装了select,poll,和epoll实现I/O多路复用。

  windows下只有select,linux上还有poll和epoll。

  select缺点每次调用都要将所有文件描述符copy到内核空间导致效率低,每次都要遍历所有的fd,是否有数据访问。最大连接数1024,poll只是没有连接数限制。

  epoll:第一个函数创建epoll句柄,只有第一次要将所有文件描述符copy到内核空间,第二个函数回调函数,某一个函数某一个动作成功完成后会触发的函数,为所有fd绑定回调函数,一旦有数据访问触发此回调函数,回调函数将fd放到链表中。第三个函数判断链表是否为空。

import selectors  # 基于select模块实现的IO多路复用,建议大家使用

import socket

sock=socket.socket()
sock.bind(("127.0.0.1",8800))

sock.listen(5)

sock.setblocking(False)

sel=selectors.DefaultSelector() #根据具体平台选择最佳IO多路机制,比如在linux,选择epoll

def read(conn,mask):

    try:
        data=conn.recv(1024)
        print(data.decode("UTF8"))
        data2=input(">>>")
        conn.send(data2.encode("utf8"))
    except Exception:
        sel.unregister(conn)

def accept(sock,mask):

    conn, addr = sock.accept()
    print("conn",conn)
    sel.register(conn,selectors.EVENT_READ,read)

sel.register(sock,selectors.EVENT_READ,accept)  # selectors对象注册事件,监听谁就要注册谁,第二个默认,第三个监听对象有变化运行这个函数

while 1:

    print("wating...")
    events=sel.select()   #  监听    [(key1,mask1),(key2,mask2)]第一次只监听sock有链接过来才会继续
    for key,mask in events:

        # print(key.fileobj)    # conn
        # print(key.data)       # read
        func=key.data#accept函数
        obj=key.fileobj#sock

        func(obj,mask)  # 1 accept(sock,mask)    # 2 read(conn,mask)
selectors模块server

  很明显封装好的模块省去了select的底层操作,用起来简便很多。

队列

  多线程多进程才有队列的概念。队列是数据类型。

import queue


#q=queue.Queue(3)  # 默认是  先进先出(FIFO)管道容纳最大值


# q.put(111)#put塞值
# q.put("hello")
# q.put(222)
#
# q.put(223,False)
#
# print(q.get())#get取值取不到值就是block
# # print(q.get())
# # print(q.get())
# #
# q.get(False)#取不到还把block转成false就会报错了。


# queue 优点: 线程安全的
queue

  q=Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数 maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。

  q.put(10) 调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目值; 第二个block为可选参数,默认为 1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0, put方法将引发Full异常。

  将一个值从队列中取出 q.get() 调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且 block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。

# join和task_done


# q=queue.Queue(5)

# q.put(111)
# q.put(222)
# q.put(22222)
#
#
# while not q.empty():
#         a=q.get()
#         print(a)
#q.task_done()#任务完成了告诉一下join


# b=q.get()
# print(b)
# q.task_done()

# q.join()只有所有的都任务都结束才不block否则都卡住
#
# print("ending")
join,task_done

  join() 阻塞进程,直到所有任务完成,需要配合另一个方法task_done。

  task_done() 表示某个任务完成。每一条get语句后需要一条task_done。

  其他常用方法

  此包中的常用方法(q = Queue.Queue()):
  q.qsize() 返回队列的大小

  q.empty() 如果队列为空,返回True,反之False

  q.full() 如果队列满了,返回True,反之False

  q.full 与 maxsize 大小对应

  q.get([block[, timeout]]) 获取队列,timeout等待时间

  q.get_nowait() 相当q.get(False)非阻塞
  q.put(item) 写入队列,timeout等待时间

  q.put_nowait(item) 相当

  q.put(item, False)

  q.task_done() 在完成一项工作之后,

  q.task_done() 函数向任务已经完成的队列发送一个信号

  q.join() 实际上意味着等到队列为空,再执行别的操作。

  其他模式

  Python Queue模块有三种队列及构造函数:

  1、Python Queue模块的FIFO队列先进先出。 class queue.Queue(maxsize)

  2、LIFO类似于堆,即先进后出。 class queue.LifoQueue(maxsize)

  3、还有一种是优先级队列级别越低越先出来。 class queue.PriorityQueue(maxsize)

 

#  先进后出模式

# q=queue.LifoQueue()  #  Lifo  last in first out
#
#
# q.put(111)
# q.put(222)
# q.put(333)
#
# print(q.get())
先进后出模式

 

# 优先级

# q=queue.PriorityQueue()
#
# q.put([4,"hello4"])
# q.put([1,"hello"])
# q.put([2,"hello2"])
#
# print(q.get())
# print(q.get())
优先级

  生产者消费者模型

  是一种设计模式。我们来模拟这个过程。

#生产者消费者模型

import time,random
import queue,threading

q = queue.Queue()

def Producer(name):
  count = 0
  while count <10:#生产数据
    print("making........")
    time.sleep(2)#生产时间
    q.put(count)
    print('Producer %s has produced %s baozi..' %(name, count))

    count +=1
    #q.task_done()
    #q.join()
    print("ok......")

def Consumer(name):#消费者
  count = 0
  while count <10:
    time.sleep(1)
    if not q.empty():
        data = q.get()
        #q.task_done()
        #q.join()
        print(data)
        print('\033[32;1mConsumer %s has eat %s baozi...\033[0m' %(name, data))
    else:
        print("-----no baozi anymore----")

    count +=1

p1 = threading.Thread(target=Producer, args=('A',))
c1 = threading.Thread(target=Consumer, args=('B',))
生产者消费者模型

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!